Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đẹp trai

Tìm số tự nhiên n để n^2 + 2n + 6 là 1 số chính phương

HT.Phong (9A5)
12 tháng 9 2023 lúc 10:28

Do \(n^2+2n+6\) là số chính phương nên đặt: \(n^2+2n+6=a^2\) 

\(\Rightarrow n^2+2n+1+5=a^2\) 

\(\Rightarrow\left(n^2+2n+1\right)+5=a^2\)

\(\Rightarrow\left(n+1\right)^2+5=a^2\)

\(\Rightarrow a^2-\left(n+1\right)^2=5\)

\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\)

\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\cdot1\)

Ta có: \(a+n+1>a-n-1\)

\(\Rightarrow\left\{{}\begin{matrix}a+n+1=5\\a-n-1=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+n=4\\a-n=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\left(4+2\right):2\\n=\left(4-2\right):2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\n=1\end{matrix}\right.\)

Vậy: \(n^2+2n+6\) là số chính phương khi \(n=1\)

Đẹp trai
12 tháng 9 2023 lúc 10:08

Giúp mình vs

Nguyễn Đức Trí
12 tháng 9 2023 lúc 10:26

\(n^2+2n+6\) là số chính phương

Đặt \(n^2+2n+6=k^2\left(k\in N\right)\)

\(\Leftrightarrow4n^2+8n+24=4k^2\)

\(\Leftrightarrow4n^2+8n+1+23=\left(2k\right)^2\)

\(\Leftrightarrow\left(2n+1\right)^2+23=\left(2k\right)^2\)

\(\Leftrightarrow\left(2k\right)^2-\left(2n+1\right)^2=23\)

\(\Leftrightarrow\left(2k+2n+1\right)\left(2k-2n-1\right)=23\)

mà \(2k+2n+1>2k-2n-1,\forall a;k\in N\)

\(\Leftrightarrow\left\{{}\begin{matrix}2k+2n+1=23\\2k-2n-1=1\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}2k+2n=22\\2k-2n=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}k+n=11\\k-n=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}k=6\\n=5\end{matrix}\right.\)

Vậy \(n=5\) thỏa mãn đề bài


Các câu hỏi tương tự
Lê Thị Mai Trang
Xem chi tiết
Công Nghiêm Chí
Xem chi tiết
Phạm Ý Linh
Xem chi tiết
hải yến ngô
Xem chi tiết
Le Thi Khanh Huyen
Xem chi tiết
tuấn anh vũ
Xem chi tiết
Dương Tiến	Khánh
Xem chi tiết
Nguyễn Tiến Đạt
Xem chi tiết
Wayne Rooney
Xem chi tiết