Tìm x và y, biết:
\(\dfrac{x}{y}\)=\(\dfrac{13}{9}\) và x - y = 24
Tìm hai số x và y biết :
\(\dfrac{x}{5}\) + \(\dfrac{y}{9}\) và x - y = 24
Sửa: \(\dfrac{x}{5}=\dfrac{y}{9}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{24}{-4}=-6\\ \Rightarrow\left\{{}\begin{matrix}x=-30\\y=-54\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{24}{-4}=-6\)
Do đó: x=-30; y=-54
a) Tìm hai số x và y, biết: \(\dfrac{x}{y}=\dfrac{9}{11}\) và x+y=60
b) Cho 7x=4y và y-x=24. Tính x và y
a) \(\dfrac{x}{y}=\dfrac{9}{11}\)
\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{11}=\dfrac{x+y}{9+11}=\dfrac{60}{20}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.9=27\\y=3.11=33\end{matrix}\right.\)
b) \(7x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{7}\)
\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{y-x}{7-4}=\dfrac{24}{3}=8\)
\(\Rightarrow\left\{{}\begin{matrix}x=8.4=32\\y=8.7=56\end{matrix}\right.\)
Tìm 3 số x, y, z biết \(\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\) và x.y = 1200.
Tìm x và y, biết: a) \(\dfrac{x}{y} = \dfrac{5}{3}\) và x+y = 16; b) \(\dfrac{x}{y} = \dfrac{9}{4}\) và x – y = -15
a) Vì \(\dfrac{x}{y} = \dfrac{5}{3} \Rightarrow \dfrac{x}{5} = \dfrac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{x}{5} = \dfrac{y}{3} = \dfrac{{x + y}}{{5 + 3}} = \dfrac{{16}}{8} = 2\\ \Rightarrow x = 2.5 = 10\\y = 2.3 = 6\end{array}\)
Vậy x=10, y=6
b) Vì \(\dfrac{x}{y} = \dfrac{9}{4} \Rightarrow \dfrac{x}{9} = \dfrac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{x}{9} = \dfrac{y}{4} = \dfrac{{x - y}}{{9 - 4}} = \dfrac{{ - 15}}{5} = - 3\\ \Rightarrow x = ( - 3).9 = - 27\\y = ( - 3).4 = - 12\end{array}\)
Vậy x = -27, y = -12.
Tìm x , y , z , biết \(\dfrac{x}{13}=\dfrac{y}{7}=\dfrac{z}{5}\) và x - y - z = 6 .
Áp dụng t/c dtsbn:
\(\dfrac{x}{13}=\dfrac{y}{7}=\dfrac{z}{5}=\dfrac{x-y-z}{13-7-5}=\dfrac{6}{1}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=13.6=78\\y=13.7=91\\z=13.5=65\end{matrix}\right.\)
Tìm x,y biết :
6) 3x=4y và 2x + 3y = 7
7) \(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}\) và x-y+z=36
8) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{6}\) và 3x-2y+2z = 24
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
tìm GTNN của A= 5x+\(\dfrac{13}{9}\)y+\(\dfrac{3}{x}\) +\(\dfrac{4}{y}\)
với x,y>0 và 2x+y > hoặc =5
Áp dụng BĐT cosi:
\(A=\left(3x+\dfrac{3}{x}\right)+\left(\dfrac{4}{9}y+\dfrac{4}{y}\right)+\left(2x+y\right)\\ A\ge2\sqrt{\dfrac{9x}{x}}+2\sqrt{\dfrac{16y}{9y}}+5\\ A\ge2\cdot3+2\cdot\dfrac{4}{3}+5=\dfrac{41}{3}\)
Vậy \(A_{min}=\dfrac{41}{3}\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{3}{x}\\\dfrac{4y}{9}=\dfrac{4}{y}\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
1/ Tìm x,y biết:
a/ \(\dfrac{x}{2}\) = \(\dfrac{y}{5}\) và x+y=-21
b/ 7x = 3y và x-y=16
c/ \(\dfrac{x}{y}\) = \(\dfrac{5}{9}\) và 3x+2x=66
d/ \(\dfrac{x}{15}\) = \(\dfrac{y}{7}\) và x-2y=16
e/ \(\dfrac{x}{5}\) = \(\dfrac{y}{2}\) và x × y = 1000
2/ Tìm x,y,z biết
\(\dfrac{x}{13}\) = \(\dfrac{y}{7}\) = \(\dfrac{z}{5}\) và x-y-z=6
a. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3$
$\Rightarrow x=2(-3)=-6; y=5(-3)=-15$
b. Áp dụng tính chất dãy tỉ số bằng nhau:
$7x=3y=\frac{x}{\frac{1}{7}}=\frac{y}{\frac{1}{3}}=\frac{x-y}{\frac{1}{7}-\frac{1}{3}}=\frac{16}{\frac{-4}{21}}=-84$
$\Rightarrow x=(-84):7=-12; y=-84:3=-28$
c. $\frac{x}{y}=\frac{5}{9}\Rightarrow \frac{x}{5}=\frac{y}{9}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{5}=\frac{y}{9}=\frac{3x}{15}=\frac{2y}{18}=\frac{3x+2y}{15+18}=\frac{66}{33}=2$
$\Rightarrow x=2.5=10; y=9.2=18$
d. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{15}=\frac{y}{7}=\frac{2y}{14}=\frac{x-2y}{15-14}=\frac{16}{1}=16$
$\Rightarrow x=16.15=240; y=7.16=112$
e.
Đặt $\frac{x}{5}=\frac{y}{2}=k\Rightarrow x=5k ; y=2k$
Khi đó: $xy=5k.2k=10k^2=1000\Rightarrow k^2=100\Rightarrow k=\pm 10$
Với $k=10$ thì $x=5k=50; y=2k=20$
Với $k=-10$ thì $x=5k=-50; y=2k=-20$
Bài 2:
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{13}-\frac{y}{7}-\frac{z}{5}=\frac{x-y-z}{13-7-5}=\frac{6}{1}=6$
$\Rightarrow x=13.6=78; y=7.6=42; z=5.6=30$
Tìm x,y,z biết :
1) \(\dfrac{x}{-7}=\dfrac{y}{4}\) và \(2x-3y=-78\)
2) \(\dfrac{x}{y}=\dfrac{9}{7};\dfrac{y}{z}=\dfrac{7}{3}\) và \(x-y+z=-15\)
1. Ta có: \(\dfrac{x}{-7}=\dfrac{y}{4}\Rightarrow\dfrac{2x}{-14}=\dfrac{3y}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-3y}{-14-12}=\dfrac{-78}{-26}=3\)
=> \(\left\{{}\begin{matrix}x=-21\\y=12\end{matrix}\right.\)
2. Ta có:
- \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
- \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
=> \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
=> \(\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)