Chứng minh rằng:
S1=5+5^2+5^3+...+5^2004 chia hết cho 6;31;156
chứng minh rằng :
a) S1= 5+5^2+5^3+ ... +5^2004 chia hết cho 6;31;156
b)S2 =16^5 + 2^15 chia hết cho 33
c) S3 =53! -51! chia hết cho 29
chứng minh rằng: S=5+52+53+...+52004 chia hết cho 6; 31;156
a)ta có S=5+52+53+...+52004 =(5+52)+(53+54)+...+(52003+52004)
S=5.(1+5)+53.(1+5)+...+52003.(1+5)
S=5.6+53.6+..+52003+6
S=6.(5+53+...+52003)
Vì 6 chia hết cho 6
=> S chia hết cho 6
b)S=5.(1+5+52)+...+598.(1+5+52)
S= 5.31+...+598.31
S=31.(5+...+598)
vì 31 chia hết cho 31
=> S chia hết cho 31
c)S=5.(1+5+52+53)+...+597.(1+5+52+53)
S=5.156+...+597.156
S= 156.(5+...+597)
vì 156 chia hết cho 156
=> S chia hết cho 156
\(S=5+5^2+5^3+...+5^{2004}\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2003}\left(1+5\right)\)
\(=\left(1+5\right)\left(5+5^3+...+5^{2003}\right)\)
\(=6\left(5+5^3+...+5^{2003}\right)\)
Vậy S chia hết cho 6.
\(S=5\left(1+5+5^2\right)+...+5^{2002}\left(1+5+5^2\right)\)
\(=\left(1+5+5^2\right)\left(5+...+5^{2002}\right)\)
\(=31\left(5+...+5^{2002}\right)\)
Vậy S chia hết cho 31.
\(S=5\left(1+5+5^2+5^3\right)+...+5^{2001}\left(1+5+5^2+5^3\right)\)
\(=\left(1+5+5^2+5^3\right)\left(5+...+5^{2001}\right)\)
\(=156\left(5+...+5^{2001}\right)\)
Vậy S chia hết cho 156.
Cho S = 5 + 5^3 + 5^4 + 5^5 + 5^6 + ... + 5^2004. Chứng minh rằng: S chia hết cho 6 và 31 ( 126 và 65 )
\(S=5+5^2+5^3+5^4+...+5^{2004}\)
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)
\(S=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2003}\left(1+5\right)\)
\(S=5.6+5^3.6+...+5^{2003}.6\)
\(S=6\left(5+5^3+...+5^{2003}\right)\) chia hết cho 6
S=5+52+53+54+55+...+52004
S=(5+54)+(52+55)+(53+56)+...+(52000+52004)
S=5x126+52x126+53x126+...+52000x126
⇒S chia hết cho 126
S=5+52+53+54+55+...+52004
có 65=13*5 mà tổng S chia hết cho 5 nha nên Cm S chia hết cho 13
tổng S có 2004 số số hạng được tách thành 2 phần: S=S1+S2
Với S1=5+53=130=65*2 nên S1 chia hết cho 65
S2=52+53+54+55+...+52004
(có 2002 số số hạng) mà 2002 chia hết cho 13 nên S2 chia hết cho 65
Vậy S chia hết cho 65
(2004-1):1+1=2004(số hạng)
Vì 2004=4.501 nên ta viết S thành 501 nhóm mỗi nhóm có 4 số hạng như sau:
S=(5+5^2+5^3+5^4)+...+(5^2001+5^2002+5^2003+5^2004)
S=5.(1+5+5^2+5^3)+...+5^2001.(1+5+5^2+5^3)
S=5.156+...+5^2001.156
S=5.26.6+...+5.26.6.5^2000
S=130.6+...+130.6.5^2000
S=130.(6+...+6.5^2000)
S chia hết cho 130 (ĐPCM)
CMR: S1=5+5 mũ 2+ 5 mũ 3+ ...+ 5 MŨ 2004 CHIA HẾT CHO 6; 31; 156
a) Cho abcabc là số có 6 chữ số ( abcabc có gạch trên đầu )
Chứng tỏ rằng abcabc là bội của 3
b) Cho : S = 5 + 5^2+5^3+5^4+5^5+5^6+.....+5^2004
Chứng minh : S chia hết cho 125 và S chia hết cho 65
a)\(\overline{abcabc}=1001\cdot\overline{abc}=...\)chưa chứng minh được chia hết cho 3, bạn kiểm tra lại đề nhé.
Chắc là đề cho \(\overline{abc}⋮3\)
b)\(S=5+5^2+5^3+...+5^{2004}=\left(5^1+5^4+5^2+5^5+5^3+5^6\right)+...+\left(5^{1999}+..+5^{2001}+5^{2004}\right)\)
Cứ 2 số hạng liền kề nhau trong tổng trên đều chia hết cho 5+125=130, tức là đều chia hết cho 65.
Còn chứng minh chia hết cho 125 thì mình thấy hơi lạ, mình không làm được.
Chúc bạn học tốt!
Cho S= 5 + 5^2 + 5^3 + 5^4 + .....+ 5^2004
Chứng minh rằng S chia hết cho 126
Bài 1 : Chứng minh rằng :
a, ( 5 + 5^2 + 5^3 + .... + 5^100 ) chia hết cho 10
b, (1 + 3 + 3^2 + .... + 3^99 ) chia hết cho 40
c, ( 19^5^2003 + 8^2004 + 5.7^2003 ) chia hết cho 10
d, ( 2^2.n - 1 ) chia hết cho 5
e, ( 19^2005 + 11^2004 ) chia hết cho 10
a) 5+52+53+54+...+5100
= (5+52)+(53+54)+...+(599+5100)
= 30+52.(5+52)+...+598.(5+52)
= 30+52.30+...+598.30
= 30.(1+52+...+598)
Vì 30 chia hết cho 10
=> 30.(1+52+...+598) chia hết cho 10
=> 5+52+53+...+5100 chia hết cho 10
chứng minh rằng
a, S1 = 5+52+53+...+599+5100 chia hết cho 6
b, S2 =2+22+23+...+299+2100 chia hết cho 31
c, S3= 165+215 chia hết cho 33
\(S1=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6.\left(5+5^3+...+5^{99}\right)⋮6\)
câu b tương tự
\(S3=16^5+21^5\)
vì 16+21=33 chia hết cho 33
=>165+215 chia hết cho 33
P/S: theo công thức:(n+m chia hết cho a=> nb+mb chia hết cho a)
S1 = 5+52+53+...+599+5100
=5. (1+5)+53 . (1+5) + ... + 599.(1+5)
= 5.6 +53.6+..+ 599.6
=6.(5+53 + ... +599):6
vậy x = ...
b)2+22+23+...+299+2100
=2.(1+2)+23.(1+2) + ... + 299.(1+2)
=2.3+23+..+299):3
= ....
c)165+215
vì 16+21 chia hế 33 nên
theo công thức(n+m chia hết cho a=(nb+mb)
S1 = 5+52+53+...+599+5100
=5. (1+5)+53 . (1+5) + ... + 599.(1+5)
= 5.6 +53.6+..+ 599.6
=6.(5+53 + ... +599):6
vậy x = ...
b)2+22+23+...+299+2100
=2.(1+2)+23.(1+2) + ... + 299.(1+2)
=2.3+23+..+299):3
= ....
c)165+215
vì 16+21 chia hế 33 nên
theo công thức(n+m chia hết cho a=(nb+mb)
Cho S=5+\(5^2+5^3+...+5^{2004}\). Chứng minh rằng S chia hết cho 126 và 65,
Bạn xem lời giải của mình nhé:
Giải:
a) Có: 5 + 52 + 53 + 54 + 55 + 56 = 5(1 + 53) + 52(1 + 53) + 53(1 + 53)
= 5. 126 + 52.126 + 53.126
=> 5 + 52 + 53 + 54 + 55 + 56 chia hết cho 126.
S = (5 + 52 + 53 + 54 + 55 + 56) + 56(5 + 52 + 53 + 54 + 55 + 56) + … + 51998(5 + 52 + 53 + 54 + 55 + 56).
Tổng trên có (2004: 6 =) 334 số hạng chia hết cho 126 nên nó chia hết cho 126.
b) Có: 5 + 52 + 53 + 54 = 5+ 53 + 5(5 + 53) = 130 + 5. 130.
=> 5 + 52 + 53 + 54 chia hết cho 130
S = 5 + 52 + 53 + 54 + 54(5 + 52 + 53 + 54 ) + … + 52000(5 + 52 + 53 + 54 )
Tổng trên có (2004: 4 =) 501 số hạng chia hết cho 130 nên nó chia hết cho 130.
Có S chia hết cho 130 nên chia hết cho 65.
Chúc bạn học tốt!
S=5+5^2+5^3+...+5^2004
S=(5+5^4)+(5^2+5^5)+...+(5^2001+5^2004)(có 1007 nhóm)
S=5*(1+5^3)+5^2*(1+5^3)+...+5^2001*(1+5^3)
S=5*126+5^2*126+...+5^2001*126
S=126*(5+5^2+...+5^2001) luôn luôn chia hết cho 126
S=(5+5^3)+(5^2+5^4)+...+(5^2002+5^2004)
S=130+5*(5+5^3)+...+5^2001*(5+5^3)
S=130+5*130+...+5^2001*130
S=130*(1+5+...+5^2001)
S=65*2*(1+5+...+5^2001) luôn luôn chia hết cho 65