Rút gọn biểu thức \(\sqrt{16b}\) + \(2\sqrt{40b}\) - \(3\sqrt{90b}\) với b ≥ 0 là
Rút gọn: (Giải chi tiết từng bước)
4) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\) với b \(\ge\) 0
4) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\)
\(=\sqrt{4^2\cdot b}+2\sqrt{2^2\cdot10b}-3\sqrt{3^2\cdot10b}\)
\(=4\sqrt{b}+2\cdot2\sqrt{10b}-3\cdot3\sqrt{10b}\)
\(=4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)
\(=4\sqrt{b}+\left(4\sqrt{10b}-9\sqrt{10b}\right)\)
\(=4\sqrt{b}-5\sqrt{10b}\)
`a, sqrt(16b) + 2 sqrt(40b) - 3 sqrt(90b)`
`= 4sqrtb + 2sqrt(8.5b) - 3 sqrt(9.10b)`
`= 4 sqrt b + 4sqrt(10b) - 9 sqrt(10b)`
`= 4sqrtb-5sqrt(10b)`.
Rút gọn:
2) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\)
3) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với a \(\ge\) 0
4) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\) với b \(\ge\) 0
2) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\)
\(=7\sqrt{2}-6\sqrt{2}+\sqrt{2}\)
\(=\left(7-6+1\right)\sqrt{2}\)
\(=2\sqrt{2}\)
3) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\)
\(=3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\)
\(=\left(3-4+7\right)\sqrt{a}\)
\(=6\sqrt{a}\)
4) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\)
\(=4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)
\(=4\sqrt{b}-5\sqrt{10b}\)
Rút gọn: \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\)
\(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\) với b lớn hơn hoặc bằng 0
\(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\)
\(=\sqrt{16}\sqrt{b}+2\sqrt{40}\sqrt{b}-3\sqrt{90}\sqrt{b}\)
\(=\sqrt{b}\left(\sqrt{16}+2\sqrt{40}-3\sqrt{90}\right)\)
\(=\sqrt{b}\left(4+4\sqrt{10}-9\sqrt{10}\right)\)
\(=\sqrt{b}\left(4-5\sqrt{10}\right)\)
Rút gọn các biểu thức :
a) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\)
b) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\)
c) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\)
d) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\) với \(b\ge0\)
ĐS: a) 3√5;35;
b) 9√22;922;
c) 15√2−√5;152−5;
d) 17√25.
a) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\) = \(5\sqrt{3}+4\sqrt{3}-10\sqrt{3}\) = \(-\sqrt{3}\)
b) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\) = \(7\sqrt{2}-6\sqrt{2}+\sqrt{2}\) = \(2\sqrt{2}\)
c) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) = \(3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\) = \(6\sqrt{a}\)
d) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\) = \(4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)
= \(4\sqrt{b}-5\sqrt{10b}\)
\(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\)
giai pt:
\(\sqrt{16b}+2\sqrt{40b}-30\sqrt{90b}\) voi b\(\ge\)0
\(\sqrt{16b}+2\sqrt{40b}-30\sqrt{90b}\)
\(=\sqrt{16}\sqrt{b}+2\sqrt{40}\sqrt{b}-30\sqrt{90}\sqrt{b}\)
\(=\sqrt{b}\left(\sqrt{16}+2\sqrt{40}-30\sqrt{90}\right)\)
\(=\sqrt{b}\left(4+4\sqrt{10}-90\sqrt{10}\right)\)
\(=\sqrt{b}\left(4-86\sqrt{10}\right)\)
Rút gọn biểu thức:
\(\sqrt{49b}+2\sqrt{40b}-3\sqrt{90b}\left(b\ge0\right)\)
\(=7\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}=7\sqrt{b}-5\sqrt{10b}\)
Rut gon A = \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}va`b\ge0\)
\(A=\sqrt{4^2b}+2\sqrt{2^2\cdot10b}-3\sqrt{3^2\cdot10b}=4\sqrt{b}+4\sqrt{10}\cdot\sqrt{b}-9\sqrt{10}\cdot\sqrt{b}\)
\(=4\sqrt{b}-5\sqrt{10}\sqrt{b}=\left(4-5\sqrt{10}\right)\sqrt{b}\)
Rut gon A = √16b+2√40b−3√90bva`b≥0
A=√42b+2√22·10b−3√32·10b=4√b+4√10·√b−9√10·√b
=4√b−5√10√b=(4−5√10)√b