Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Tiến Đỗ
Xem chi tiết
PHẠM PHƯƠNG	LIÊN
Xem chi tiết
Shiba Inu
9 tháng 7 2021 lúc 16:40

    \(3a-b+ab=8\)

\(\Rightarrow\) \(a\left(b+3\right)-\left(b+3\right)=5\)

\(\Rightarrow\) \(\left(a-1\right)\left(b+3\right)=5=1.5=\left(-1\right).\left(-5\right)\) 

Lập bảng, ta tìm được a = 2, b = 2

ILoveMath
9 tháng 7 2021 lúc 16:44

3a-b+ab=8

⇒a(3+b)-b=8

⇒a(3+b)-3-b+3=8

⇒a(3+b)-(3+b)=5

⇒(a-1)(3+b)=5

ta có bảng:

a-1-1-515 
3+b-5-151 
a0-426 
b-8-42-2 

Vậy (a,b)∈{(-1;-5);(-4;-4);(2;2);(6;-2)}

VUX NA
Xem chi tiết
chi chăm chỉ
Xem chi tiết
Hoàng Lê Bảo Ngọc
24 tháng 7 2016 lúc 16:13

Đặt \(M=a^4+4b^4\)

Ta có : \(M=a^4+4b^4=\left(a^4+2.a^2.2b^2+4b^4\right)-4a^2b^2=\left(a^2+2b^2\right)^2-\left(2ab\right)^2\)

\(=\left(a^2-2ab+2b^2\right)\left(a^2+2ab+2b^2\right)\)

Vì M là số nguyên tố nên chỉ có các trường hợp : 

1. \(\hept{\begin{cases}a^2-2ab+2b^2=1\\a^2+2ab+b^2=a^4+4b^4\end{cases}}\)

2. \(\hept{\begin{cases}a^2-2ab+2b^2=a^4+4b^4\\a^2+2ab+2b^2=1\end{cases}}\)

Bạn hãy giải từng trường hợp.

chi chăm chỉ
24 tháng 7 2016 lúc 16:17

thanks bn a

Hoàng Lê Bảo Ngọc
3 tháng 11 2016 lúc 17:44

Mình sẽ làm mẫu cho bạn nhé :)

1. \(\hept{\begin{cases}a^2-2ab+2b^2=1\\a^2+2ab+2b^2=a^4+4b^4\end{cases}}\)

Cộng hai pt trên theo vế : \(2a^2+4b^2=a^4+4b^4+1\)

Đặt \(x=a^2,y=b^2\) (\(x,y\ge0\))

Thì pt trên trở thành \(2x+4y=x^2+4y^2+1\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-4y+1\right)=1\)

\(\Leftrightarrow\left(x-1\right)^2+\left(2y-1\right)^2=1\)

Vì x,y nguyên nên một trong hai giá trị \(\left(x-1\right)^2\) và \(\left(2y-1\right)^2\) bằng 0 hoặc 1 (cái này bằng 0 thì cái kia bằng 1)

Từ đó suy ra các giá trị x,y

Kuvip Yb
Xem chi tiết
Akai Haruma
17 tháng 6 2021 lúc 22:55

Lời giải:

Gọi $d$ là ƯCLN của $a$ và $b$. Khi đó $a=dx, b=dy$ với $x,y$ nguyên dương và nguyên tố cùng nhau

Ta có:

$d=15$

BCNN$(a,b)=dxy=2835$

$\Rightarrow xy=189$

Mà $x,y$ là 2 số nguyên dương nguyên tố cùng nhau nên $(x,y)=(1,189), (189,1), (27,7), (7,27)$

$\Rightarrow (a,b)=(15,2835), (2835, 15), (405,105), (105,405)$

Nguyễn Hồng Phúc
Xem chi tiết
Trần Quỳnh Anh
17 tháng 6 2023 lúc 21:49

bằng 3 nha

 

Kill Myself
Xem chi tiết
Công Tử Họ Nguyễn
9 tháng 10 2018 lúc 21:27

Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1). 
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

Kim
9 tháng 10 2018 lúc 21:27

 Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

Hoàng Thế Hải
9 tháng 10 2018 lúc 21:34

Xét x= 1 => \(\dfrac{2}{y-1}\in\mathbb N\), từ đó có \(y=2\vee y=3\)

Xét y=1 => \(\dfrac{x^3+x}{x-1}=x^2+x+2+\dfrac{2}{x-1}\in\mathbb N\), từ đó có \(x=2\vee x=3\)

Xét \(x\ge 2\) hoặc \(y\ge 2\) . Ta có : \((x,xy-1)=1\). Do đó :

\(xy-1|x^3+x\Rightarrow xy-1|x^2+1\Rightarrow xy-1|x+y\)

=> \(x+y\ge xy-1\Rightarrow (x-1)(y-1)\le 2\). Từ đó có \((x-1)(y-1)=1\ \vee (x-1)(y-1)=2\) 

=> x = y = 2 ( loại ) hoặc x = 2 ; y = 3 hoặc x = 3 ; y= 2

Vậy các cặp số ( x;y ) thỏa mãn là (1;2),(2;1),(1;3),(3;1),(2;3),(3;2)

VUX NA
Xem chi tiết
Yeutoanhoc
26 tháng 8 2021 lúc 15:04

Sao cho gì vậy bạn ?

VUX NA
26 tháng 8 2021 lúc 15:05

là số nguyên

 

ミ★ήɠọς τɾίếτ★彡
26 tháng 8 2021 lúc 15:05

đề có phải là:Tìm tất cả các cặp số nguyên dương (a;b) sao cho\(\dfrac{ab\left(a+b\right)}{ab+2}\) là số nguyên không bạn

Đinh Đức Hùng
Xem chi tiết
Hạ Băng
15 tháng 1 2018 lúc 19:26

vào link này tham khảo :  https://diendantoanhoc.net/topic/134969-tìm-tất-cả-các-cặp-số-nguyên-dương-a-và-b-sao-cho-fraca2-2ab2-là-số-nguyên/

I lay my love on you
Xem chi tiết
Đỗ Bảo Châu
7 tháng 10 2021 lúc 19:50

Mình không biết nha tạm thời bạn hỏi bạn khác đi 😅

Khách vãng lai đã xóa