Tìm n∈Z biết
a) 2n+1⋮3-n
b)8n+1⋮2-n
c)3n+4⋮2-n
d)2n+1⋮2n+2
e)3-4n⋮2n+1
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
lim \(\frac{\left(2n^2-3n+5\right)\left(2n+1\right)}{\left(4-3n\right)\left(2n^2+n+1\right)}\)
lim \(\frac{\sqrt{n^4+1}}{n}-\frac{\sqrt{4n^6+2}}{n^2}\)
lim \(\frac{2n+3}{\sqrt{9n^2+3}-\sqrt[3]{2n^2-8n^3}}\)
a) lim \(\frac{\left(2n^2-3n+5\right)\left(2n+1\right)}{\left(4-3n\right)\left(2n^2+n+1\right)}\)
= lim \(\frac{\left(2-\frac{3}{n}+\frac{5}{n^2}\right)\left(2+\frac{1}{n}\right)}{\left(\frac{4}{n}-3\right)\left(2+\frac{1}{n}+\frac{1}{n^2}\right)}=\frac{4}{-6}=-\frac{2}{3}\)
b)lim ( \(\frac{\sqrt{n^4+1}}{n}-\frac{\sqrt{4n^6+2}}{n^2}\))
= lim ( \(\frac{n\sqrt{n^4+1}-\sqrt{4n^6+2}}{n^2}\) )
= lim \(\frac{\left(n^6+n^2\right)-\left(4n^6+2\right)}{n^2\left(n\sqrt{n^4+1}+\sqrt{4n^2+2}\right)}\)
= lim \(\frac{-3n^6+n^2+2}{n^3\sqrt{n^4+1}+n^2\sqrt{4n^2+2}}\)
= lim \(\frac{-3n\left(1-\frac{1}{n^4}-\frac{2}{n^6}\right)}{\sqrt{1+\frac{1}{n^4}}+\frac{1}{n^2}\sqrt{4+\frac{2}{n^2}}}\)
= lim \(-3n=-\infty\)
c) lim \(\frac{2n+3}{\sqrt{9n^2+3}-\sqrt[3]{2n^2-8n^3}}\)
= lim\(\frac{2+\frac{3}{n}}{\sqrt{9+\frac{3}{n^2}}-\sqrt[3]{\frac{2}{n}-8}}=\frac{2}{3+2}=\frac{2}{5}\)
2) tìm gtln hoặc gtnn của R=xy biết :
a) x+y=6. b) x-y=4
3) tìm n€ Z để giá trị Biểu Thức A chia hết cho giá trị Biểu Thức B
a) A=8n^2-4n+1 và B = 2n+1
b) A=4n^3-2n^2-6n+5 và B=2n-1
Bài 3:
a: \(\Leftrightarrow8n^2+4n-8n-4+5⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-1;2;-3\right\}\)
b: \(\Leftrightarrow4n^3-2n^2-6n+3+2⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{1;0\right\}\)
1.Tìm x thuộc z biết:
a)4n^2+2n+7 chia hết 2n+1
b)4n^2+4n+12 chia hết 2n+1
c)9n^2-12n+3 chia hết 3n-2
d)5n^2-n+14 chia hết 5n-1
tìm n thuộc Z để các số sau là số nguyên:
a.6n-4/2n+1
b.3n+2/4n-4
c.4n-1/3-2n
`a in ZZ`
`=>6n-4 vdots 2n+1`
`=>3(2n+1)-7 vdots 2n+1`
`=>7 vdots 2n+1`
`=>2n+1 in Ư(7)={+-1,+-7}`
`=>2n in {0,-2,6,-8}`
`=>n in {0,-1,3,-4}`
`b in ZZ`
`=>3n+2 vdots 4n-4`
`=>12n+8 vdots 4n-4`
`=>3(4n-4)+20 vdots 4n-4`
`=>20 vdots 4n-4`
`=>4n-4 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`
`=>4n-4 in {+-4,+-20}`
`=>n-1 in {+-1,+-5}`
`=>n in {0,2,6,-4}`
`c in ZZ`
`=>4n-1 vdots 3-2n`
`=>2(3-2n)-7 vdots 3-2n`
`=>7 vdots 3-2n`
`=>3-2n in Ư(7)={+-1,+-7}`
`=>2n in {4,0,-4,10}`
`=>n in {2,0,-2,5}`
a) đk: \(n\ne\dfrac{-1}{2}\)
Để \(\dfrac{6n-4}{2n+1}\) nguyên
<=> \(\dfrac{3\left(2n+1\right)-7}{2n+1}\) nguyên
<=> \(3-\dfrac{7}{2n+1}\) nguyên
<=> \(7⋮2n+1\)
Ta có bảng
2n+1 | 1 | -1 | 7 | -7 |
n | 0 | -1 | 3 | -4 |
tm | tm | tm | tm |
b)đk: \(n\ne1\)
Để \(\dfrac{3n+2}{4n-4}\) nguyên
=> \(\dfrac{3n+2}{n-1}\) nguyên
<=> \(\dfrac{3\left(n-1\right)+5}{n-1}\) nguyên
<=> \(3+\dfrac{5}{n-1}\) nguyên
<=> \(5⋮n-1\)
Ta có bảng:
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
Thử lại | tm | loại | tm | loại |
c) đk: \(n\ne\dfrac{3}{2}\)
Để \(\dfrac{4n-1}{3-2n}\) nguyên
<=> \(\dfrac{4n-1}{2n-3}\) nguyên
<=> \(\dfrac{2\left(2n-3\right)+5}{2n-3}\) nguyên
<=> \(2+\dfrac{5}{2n-3}\) nguyên
<=> \(5⋮2n-3\)
Ta có bảng:
2n-3 | 1 | -1 | 5 | -5 |
n | 2 | 1 | 4 | -1 |
tm | tm | tm | tm |
Giải:
a) \(\dfrac{6n-4}{2n+1}\)
Để \(\dfrac{6n-4}{2n+1}\) là số nguyên thì \(6n-4⋮2n+1\)
\(6n-4⋮2n+1\)
\(\Rightarrow6n+3-7⋮2n+1\)
\(\Rightarrow7⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
2n+1 | -7 | -1 | 1 | 7 |
n | -4 | -1 | 0 | 3 |
Vậy \(n\in\left\{-4;-1;0;3\right\}\)
b) \(\dfrac{3n+2}{4n-4}\)
Để \(\dfrac{3n+2}{4n-4}\) là số nguyên thì \(3n+2⋮4n-4\)
\(3n+2⋮4n-4\)
\(\Rightarrow12n+8⋮4n-4\)
\(\Rightarrow12n-12+20⋮4n-4\)
\(\Rightarrow20⋮4n-4\)
\(\Rightarrow4n-4\inƯ\left(20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)
Ta có bảng giá trị:
4n-4 | -20 | -10 | -5 | -4 | -2 | -1 | 1 | 2 | 4 | 5 | 10 | 20 |
n | -4 (t/m) | \(\dfrac{-3}{2}\) (loại) | \(\dfrac{-1}{4}\) (loại) | 0 (t/m) | \(\dfrac{1}{2}\) (loại) | \(\dfrac{3}{4}\) (loại) | \(\dfrac{5}{4}\) (loại) | \(\dfrac{3}{2}\) (loại) | 2 (t/m) | \(\dfrac{9}{4}\) (loại) | \(\dfrac{7}{2}\) (loại) | 6 (t/m) |
Vậy \(n\in\left\{-4;0;2;6\right\}\)
c) \(\dfrac{4n-1}{3-2n}\)
Để \(\dfrac{4n-1}{3-2n}\) là số nguyên thì \(4n-1⋮3-2n\)
\(4n-1⋮3-2n\)
\(\Rightarrow6-4n+1⋮3-2n\)
\(\Rightarrow1⋮3-2n\)
\(\Rightarrow3-2n\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
3-2n | -1 | 1 |
n | 2 | 1 |
Vậy \(n\in\left\{1;2\right\}\)
Chúc bạn học tốt!
đặt \(a=lim\dfrac{3n^3-2n+1}{4n^4+2n+1}\). tìm \(lim\dfrac{an^3-\left(a+2\right)n^2+1}{4an^3-n^2+3n+3}\)
\(a=\lim\limits\dfrac{3n^3-2n+1}{4n^4+2n+1}=\lim\limits\dfrac{\dfrac{3n^3}{n^4}-\dfrac{2n}{n^4}+\dfrac{1}{n^4}}{\dfrac{4n^4}{n^4}+\dfrac{2n}{n^4}+\dfrac{1}{n^4}}=0\)
\(\Rightarrow\lim\limits\dfrac{-2n^2+1}{-n^2+3n+3}=\lim\limits\dfrac{-\dfrac{2n^2}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}+\dfrac{3}{n^2}}=-\dfrac{2}{-1}=2\)
a) lim n-1/ 2n+7
b) lim 4n^2 -n+1/6n^2 +1
c) lim 3n^2-n/1-n^2
d)lim 8n+1/n^2-2n+19
e) lim (căn 9n^2 -4 ) +2n /2n+7
a/ \(=\lim\limits\frac{1-\frac{1}{n}}{2+\frac{7}{n}}=\frac{1-0}{2+0}=\frac{1}{2}\)
b/ \(=lim\frac{4-\frac{1}{n}+\frac{1}{n^2}}{6+\frac{1}{n^2}}=\frac{4-0+0}{6+0}=\frac{4}{6}=\frac{2}{3}\)
c/ \(=lim\frac{3-\frac{1}{n}}{\frac{1}{n^2}-1}=\frac{3-0}{0-1}=\frac{3}{-1}=-3\)
d/ \(=lim\frac{\frac{8}{n}+\frac{1}{n^2}}{1-\frac{2}{n}+\frac{19}{n^2}}=\frac{0+0}{1-0+0}=\frac{0}{1}=0\)
e/ \(=lim\frac{\sqrt{9-\frac{4}{n^2}}+2}{2+\frac{7}{n}}=\frac{\sqrt{9}+2}{2+0}=\frac{5}{2}\)
tìm số tự nhiên n để:
a) n^2 + 4n+96 chia hết cho n+1
b)8n^2 + 20n + 50 chia hết cho 2n+3
c)2n^2 + 48 chia hết cho n+ 1
d ) 3n+1 chia hết cho 11-2n
\(a,n^2+4n+96⋮n+1\)
\(\Rightarrow n^2+n+3n+96⋮n+1\)
\(\Rightarrow n\left(n+1\right)+3n+3+93\)
\(\Rightarrow n\left(n+1\right)+3\left(n+1\right)+93⋮n+1\)
\(\Rightarrow\left(n+3\right)\left(n+1\right)+93⋮n+1\)
\(\Rightarrow93⋮n+1\)
=> Tự lập bảng nha OK
Phần b tương tự
Tìm các sô nguyên n, để:
a) -8n-1 chia hết 2n+3
b) -3n+2 chia hết -n-4
c) 2n-1 chia hết 3n+2
d) 3n+2 chia hết 2n+11
a, -4(2n+3)+11 chia hết cho 2n+3
suy ra 11 chia hết cho 2n+3( do -4(2n+3) chia hết cho 2n+3)
suy ra 2n+3 thuộc ước của 11
hay 2n+3 thuộc 1;-1;11;-11
hay n thuộc -1;-2;4;-7
vậy n thuộc -1;-2;4;-7
các bài khác cũng nhân ra như vậy là tìm được n
a, -4(2n+3)+11 chia hết cho 2n+3
suy ra 11 chia hết cho 2n+3( do -4(2n+3) chia hết cho 2n+3)
suy ra 2n+3 thuộc ước của 11
hay 2n+3 thuộc 1;-1;11;-11
hay n thuộc -1;-2;4;-7
vậy n thuộc -1;-2;4;-7