Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọcc Jem
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 2 2021 lúc 20:39

Ta có: \(\left\{{}\begin{matrix}-x-y=2\\-2x-3y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\left(x+y\right)=2\\-\left(2x+3y\right)=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-2\\2x+3y=-9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\2\cdot\left(-2-y\right)+3y=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\-4-2y+3y+9=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\y=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2-\left(-5\right)\\y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2+5=3\\y=-5\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)

Nguyễn Thành
Xem chi tiết
hưng phúc
9 tháng 10 2021 lúc 17:59

6. \(\left\{{}\begin{matrix}2y-4=0\\3x+y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-2\end{matrix}\right.\)

7. \(\left\{{}\begin{matrix}4x-6y=2\\x-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\\dfrac{2+6y}{4}-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-2\end{matrix}\right.\)

8. \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}=1\\2x+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\left(1-\dfrac{y}{2}\right).3\\6\left(1-\dfrac{y}{2}\right)+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(1-\dfrac{y}{2}\right)\\y=\left(VNghiệm\right)\end{matrix}\right.\Leftrightarrow\) không tồn tại x, y

(Các câu khác tương tự nhé.)

Nguyễn Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 10 2021 lúc 21:19

9: \(\left\{{}\begin{matrix}3x-2=y\\2x+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=2\\2x+3y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4\\6x+9y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11y=-14\\3x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{14}{11}\\x=\dfrac{y+2}{3}=\dfrac{\dfrac{14}{11}+2}{3}=\dfrac{12}{11}\end{matrix}\right.\)

Nguyễn Hoàng Minh
9 tháng 10 2021 lúc 21:21

\(9,\Leftrightarrow\left\{{}\begin{matrix}3x-2=y\\2x+3\left(3x-2\right)=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2=y\\11x=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{12}{11}\\y=\dfrac{14}{11}\end{matrix}\right.\)

\(10,\Leftrightarrow\left\{{}\begin{matrix}2x=2-3y\\2\left(2-3y\right)-y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2-3y\\4-6y-y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{14}\\y=\dfrac{3}{7}\end{matrix}\right.\)

Thiên Phong
Xem chi tiết
alibaba nguyễn
27 tháng 12 2016 lúc 9:12

\(\hept{\begin{cases}2x^4+3x^3+45x=27y^2\left(1\right)\\2y^2-x^2+1=\sqrt{3y^4-4x^2+6y^2-2x^2y^2}\left(2\right)\end{cases}}\)

Xét (2) ta có

\(2y^2-x^2+1=\sqrt{3y^4-4x^2+6y^2-2x^2y^2}\)

Bình phương 2 vế rút gọn ta được

\(\Leftrightarrow y^4+x^4-2x^2y^2-2y^2+2x^2+1=0\)

\(\Leftrightarrow\left(y^4-2x^2y^2+y^4\right)-2\left(y^2-x^2\right)+1=0\)

\(\Leftrightarrow\left(y^2-x^2-1\right)^2=0\)

\(\Leftrightarrow y^2=x^2+1\left(3\right)\)

Thế (3) vào (1) ta được

\(2x^4+3x^3+45x=27\left(x^2+1\right)^2\)

\(\Leftrightarrow25x^4-3x^3+54x^2-45x+27=0\)

\(\Leftrightarrow\left(25x^4-\frac{2.5.3}{2.5}x^3+\frac{9}{100}x^2\right)+\left(\frac{5391}{100}x^2-\frac{2\sqrt{5391}.45.10}{10.\sqrt{5391}.2}x+\frac{5625}{599}\right)+\frac{10548}{599}=0\)

\(\Leftrightarrow\left(5x^2-\frac{3}{10}x\right)^2+\left(\frac{\sqrt{5391}}{10}x-\frac{45}{\sqrt{599}}\right)^2+\frac{10548}{599}=0\)

\(\Rightarrow\)PT vô nghiệm

PS: Đề có sai không mà nhìn gớm vậy bạn

Minh Anh
28 tháng 12 2016 lúc 13:11

\(\hept{\begin{cases}2x^4+3x^3+45x=27y^2\left(1\right)\\2y^2-x^2+1=\sqrt{3y^4-4x^2+6y^2-2x^2y^2}\left(2\right)\end{cases}}\)

ĐK: \(2y^2+1\ge1\)

Phương trình (2) tương đương:

\(\left(2y^2-x^2+1\right)^2=3y^4-4x^2+6y^2-2x^2y^2\)

\(\Leftrightarrow y^4+2x^2-2x^2y^2+x^4+1-2y^2=0\)

\(\Leftrightarrow\left(x^2+1-y^2\right)^2=0\)

\(\Leftrightarrow x^2+1=y^2\)

Thế \(x^2+1=y^2\) vào phương trình (1) ta có:

\(2x^4+3x^3+45x=27\left(x^2+1\right)\)

\(\Leftrightarrow2x^4+3x^3-27x^2+45x-27=0\)

\(\Leftrightarrow\left(x-\frac{3}{2}\right)\left(2x^3+6x^2-18x+18\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\Rightarrow y=\frac{\sqrt{13}}{2}\\x=-\sqrt[3]{16}-\sqrt[3]{4}-1\Rightarrow y=\sqrt{\left(\sqrt[3]{16}+\sqrt[3]{4}+1\right)^2+1}\end{cases}}\)

Vậy:.....

Minh Anh
28 tháng 12 2016 lúc 16:58

Bạn alibaba nguyễn làm sai ở bước thay y^2=x^2+1 rồi 

Quang Huy Bùi
Xem chi tiết
Rin Huỳnh
18 tháng 1 2022 lúc 18:10

\(\begin{cases} x-3y=-2\\2x+y=3 \end{cases} <=> \begin{cases} x-3(3-2x)=-2\\y=3-2x \end{cases} <=> \begin{cases} 7x=7\\y=3-2x \end{cases} \\<=> \begin{cases} x=1\\y=3-2.1 \end{cases} <=>\begin{cases} x=1\\y=1 \end{cases}\)

Văn Vỹ
Xem chi tiết
Vô danh
17 tháng 3 2022 lúc 16:34

ĐKXĐ:\(\left\{{}\begin{matrix}x\ne3\\y\ne1\end{matrix}\right.\)

Đặt `(x)/(x-3)` = a, `(y)/(y-1)` = b

  \(\text{Hệ}\Leftrightarrow\left\{{}\begin{matrix}a+3b=5\\4a-b=7\end{matrix}\right.\\ \Leftrightarrow...\\ \Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x-3}=2\\\dfrac{y}{y-1}=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2x-6\\y=y-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=6\\-1=0\left(vô.lí\right)\end{matrix}\right.\)

Vậy hpt vô nghiệm

Quỳnh Anh Nguyễn
Xem chi tiết
Quỳnh Anh Nguyễn
13 tháng 1 2021 lúc 15:59

giúp mình nhé

poppy Trang
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 11 2018 lúc 12:51

\(\left\{{}\begin{matrix}\left(x-y\right)\left(2x+3y\right)=12\\\left(x-y\right)\left(xy+6\right)=12\end{matrix}\right.\)

Trừ trên cho dưới:

\(\left(x-y\right)\left(2x+3y-xy-6\right)=0\Leftrightarrow\left(x-y\right)\left(x-3\right)\left(2-y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\x=3\\y=2\end{matrix}\right.\)

TH1: \(x=y\) thay vào pt đầu ta được \(0=12\) (vô nghiệm)

TH2: \(x=3\Rightarrow-3y^2+3x+6=0\Rightarrow\left[{}\begin{matrix}y=-1\\y=2\end{matrix}\right.\)

TH3: \(y=2\Rightarrow2x^2+2x-24=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)

Vậy pt có 3 cặp nghiệm \(\left(x;y\right)=\left(3;-1\right);\left(3;2\right);\left(-4;2\right)\)

Hello
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 1 2022 lúc 8:55

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=-1\\x-3y=-1\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in R\)