Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lâm Phúc
Xem chi tiết
dong duc dung
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2023 lúc 21:12

a:

Số số hạng trong dãy M là:

(1002-12):10+1=100(số)

=>Sẽ có 50 cặp (1002;992); (982;972);....;(22;12) có hiệu bằng 10

\(M=1002-992+982-972+...+22-12\)

\(=\left(1002-992\right)+\left(982-972\right)+...+\left(22-12\right)\)

\(=10+10+...+10\)

=10*50=500

b: \(N=\left(202+182+...+42+22\right)-\left(192+172+...+32+12\right)\)

\(=\left(202-192\right)+\left(182-172\right)+...+\left(22-12\right)\)

=10+10+...+10

=10*10=100

Earth-K-391
Xem chi tiết
boy not girl
8 tháng 5 2021 lúc 16:45

fan bé sans à

IamnotThanhTrung
8 tháng 5 2021 lúc 16:47

wuttttt

Đoàn Đạt
8 tháng 5 2021 lúc 16:49

undefined

Tạ Hà Thanh Hải
Xem chi tiết
Dung
Xem chi tiết
when the imposter is sus
19 tháng 8 2023 lúc 14:34

Each term of S is n!(n2 + n + 1) = n![n(n + 1) + 1] = n(n + 1)n! + n!

By definition, n(n + 1)n! + n! = n! + n(n + 1)!

Therefore, S can be simplified as

1! + 1.2! + 2! + 2.3! + ... + 100! + 100.101!

So \(\dfrac{S+1}{101!}=\dfrac{1+1!+1\cdot2!+2!+2\cdot3!+...+100!+100\cdot101!}{101!}\)

\(=\dfrac{2!+1\cdot2!+2!+2\cdot3!+3!+...+100!+100\cdot101!}{101!}\)

\(=\dfrac{3!+2\cdot3!+3!+...+100!+100\cdot101!}{101!}\)

\(=\dfrac{4!+3\cdot4!+4!+...+100!+100\cdot101!}{101!}\)

\(=...\)

\(=\dfrac{100!+99\cdot100!+100!+100\cdot101!}{101!}\)

\(=\dfrac{101!+100\cdot101!}{101!}\)

\(=1+100=101\)

Hence, \(\dfrac{S+1}{101!}=101\)

6a01dd_nguyenphuonghoa.
Xem chi tiết

https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881

Cô làm rồi em nhá

6a01dd_nguyenphuonghoa.
Xem chi tiết

Câu a, xem lại đề bài

Câu b: 

    P =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)

   Vì  \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\)                =  \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)

         \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\)                = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)

         \(\dfrac{1}{4^2}\)  < \(\dfrac{1}{3.4}\)               = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) 

     ........................

        \(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

Cộng vế với vế ta có:  

0< P < 1 - \(\dfrac{1}{2023}\) < 1

Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp

 

Câu c:  

C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C 

B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0 

Cộng vế với vế ta có: 

C+B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)\(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0

             Mặt khác ta có: 

1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)

Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)

 

 

Chang
Xem chi tiết
Đặng Ngọc Quỳnh
22 tháng 10 2020 lúc 18:48

a) \(=\left(127+73\right)^2=200^2=40000\)

b) \(=18^8-\left(18^8-1\right)=1\)

c) \(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\)

\(=100+99+98+97+...+2+1=5050\)

d) biến đổi thành \(20^2-19^2+18^2-17^2+..+2^2-1^2\)

rồi giải ra như trên

Khách vãng lai đã xóa
Nguyễn Duy K hánh
Xem chi tiết
Gia bảo Đặng
27 tháng 4 2021 lúc 20:05

Đặt A=12+22+32+...+1002
A=1.1+2.2+3.3+...+100.100
A=1(

Khách vãng lai đã xóa
nguyễn đăng khôi
Xem chi tiết
HT.Phong (9A5)
25 tháng 7 2023 lúc 9:09

Cho: \(A=\dfrac{2}{2^2}+\dfrac{2}{3^2}+\dfrac{2}{4^2}+....+\dfrac{2}{100^2}\)

\(A=2\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\right)\)

Và cho \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

Mà: 

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)

....

\(\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}\)

Nên: \(B< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}\)

\(\Rightarrow B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow B< 1-\dfrac{1}{100}\)

\(\Rightarrow B< \dfrac{99}{100}\)

Mà: \(\dfrac{99}{100}< 1\) (tử nhỏ hơn mẫu)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)

\(\Rightarrow A=2\cdot\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+..+\dfrac{1}{100^2}\right)< 2\) (đpcm)

Nguyễn Đức Trí
25 tháng 7 2023 lúc 9:05

\(\dfrac{2}{2^2}+\dfrac{2}{3^2}+\dfrac{2}{4^2}+...+\dfrac{2}{100^2}\)

\(=2\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\right)\)

mà \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)

\(\Rightarrow dpcm\)