Chứng minh các cặp phân thức sau bằng nhau 3 x 2 - 3 x y 3 ( x - y ) 2 và x x - y
x^4+y^4*(x+y)^4=2(x^2+xy+y^2)^2
Chứng minh 2 hằng đẳng thức trên bằng nhau
Lấy hai vế trừ đi cho nhau rồi nếu có kết quả =0 thì hai hằng đẳng thức này bằng nhau
Cho hai biểu thức A = 3x (y - x) và B = y2 - x2
Biết (x - y) chia hết cho 11. Chứng minh rằng (A - B) chia hết cho 11
\(B=\left(y^2-x^2\right)=\left(y-x\right)\left(y+x\right)\)
\(A-B=\left(y-x\right)\left(2x-y\right)\).Do \(\left(x-y\right)⋮11\Rightarrow-1\left(x-y\right)⋮11\Rightarrow y-x⋮11\)
Đặt y - x = 11k.Ta có: \(A-B=11k\left(2x-y\right)⋮11^{\left(đpcm\right)}\)
Chứng minh các phân thức sau bằng nhau 2 ( x + 1 ) y - x y 2 = - 2 ( x + 1 ) 3 x ( x + 1 ) 2 y
Chứng minh các phân thức sau bằng nhau 2 ( x + 1 ) y - x y 2 = - 2 ( x + 1 ) 3 x ( x + 1 ) 2 y
Cho các đa thức A=xyz - xy^2 - xz^2; B= y^3 + z^3. Chứng minh rằng: nếu x-y-z=0 thì A và B là hai đa thức đối nhau
Cho các đa thức A=xyz - xy^2 - xz^2; B= y^3 + z^3. Chứng minh rằng: nếu x-y-z=0 thì A và B là hai đa thức đối nhau
x-y-z=0
=>x=y+z
=>x2=y2+z2+2yz
=>y2+z2=x2-2yz
*A=xyz-xy2-xz2=x.(yz-y2-z2)=x.[yz-(x2-2yz)]=x.(3yz-x2)=3xyz-x3
*B=y3+z3=(y+z)(x2-yz+z2)=x.(x2-2yz-yz)=x3-3xyz=-(3xyz-x3)
Vậy A và B đối nhau
Chứng minh rằng:
a) Biểu thức A=x^2+x+1 luôn luôn dương với mọi x
b) Biểu thức B= x^2-xy+y^2 luôn luôn dương với mọi x,y không đồng thời bằng 0
c) Biểu thức C= 4x-10-x^2 luôn luôn âm với mọi x
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)
Câu 1: Phép chia đa thức ( x – y )2 cho đa thức ( y – x )2
Câu 2 : Rút gọn biểu thức P =(x + y)2 + (x - y)2 + 2(x + y)(x- y)
Câu 3 : Giá trị của biểu thức x2 + 2x + 1 tại x = -1
Câu 4 : Một hình chữ nhật có hai cạnh kề bằng 4cm và 6cm. Tính độ dài đường chéo của hình chữ nhật đó
\(1,=\left(x-y\right)^2:\left(x-y\right)^2=1\\ 2,P=\left(x+y+x-y\right)^2=4x^2\\ 3,=\left(x+1\right)^2=\left(-1+1\right)^2=0\\ 4,\)
Áp dụng PTG, độ dài đường chéo là \(\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
Câu 1:
\(\left(x-y\right)^2:\left(y-x\right)^2\\ =\left(x-y\right)^2:\left(x-y\right)^2\\ =1\)
Câu 2:
\(\left(x+y\right)^2+\left(x-y\right)^2+2\left(x+y\right)\left(x-y\right)=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
Câu 3:
\(x^2+2x+1=\left(x+1\right)^2=\left(-1+1\right)^2=0\)
Câu 4:
Gọi hcn đó là ABCD có chiều dài là AB, chiều rộng là AD
Áp dụng Pi-ta-go ta có:\(AB^2+AD^2=AC^2\Rightarrow AC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)