so sanh \(y=\frac{10^{6+1}}{10^{5+1}}\)va \(y=\frac{10^{7+1}}{10^{6+1}}\)
so sanh \(y\frac{10^{6+1}}{10^{5+1}}\)va\(y\frac{10^{7+1}}{10^{6+1}}\)
1so sanh \(y=\frac{10^6+1}{10^{5+1}}\)va \(y\frac{10^{7+1}}{10^{6+1}}\)2x
so sanh cac phan so sau: 10^6+1/10^5+1 va 10^7+1/10^6+1
so sanh 2 PS sau
\(\frac{7^{10}+1}{7^{10}-1}\)va \(\frac{7^{10}-1}{7^{10}-3}\)
So sanh A va B biet rang:
\(A=\frac{10^{15}+1}{10^{16}+1}\) \(B=\frac{10^{16}+1}{10^{17}+1}\)
TOÁN 6 NHA
Trước hết ta so sánh 10A và 10B
Ta có:
\(10A=\frac{10^{16}+10}{10^{16}+1}=1+\frac{9}{10^{16}+1}\) \(10B=\frac{10^{17}+10}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)
Vì: \(\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\) nên 10A > 10B, do đó A>B
Ta thấy:B<1 vì 1015+1<1016+1
Theo quy tắc :\(\frac{a}{b}\)<\(\frac{a+m}{b+m}\)nên ta có: B =\(\frac{10^{16}+1}{10^{17}+1}\)<\(\frac{10^{16}+1+9}{10^{17}+1+9}\)<\(\frac{10^{16}+10}{10^{17}+10}\)<\(\frac{10\left(10^{15}+1\right)}{10\left(10^{16}+1\right)}\)=A
Suy ra B<A
trước hết ta so sánh 10A và 10B
10A =10^16+10/10^16+1 10B=10^17+10/10^17+1
10A=1+9/10^16+1 10B=1+9/10^17 +1
mà 1=1;9/10^16+1>9/10^17+1 nên 10A>10B nên A>B
So sanh A va B
A = 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 +1/8 + 1/9 +1/10
B = 23/10
Tính giúp em với ạ
Cho A=\(\frac{10^{11}-1}{10^{12}-1}\)va B=\(\frac{10^{10}+1}{10^{11}+1}\)
So sanh A va B
a)Cho a,b,n thuoc N*.Hay so sanh$\frac{a+n}{b+n}$a+nb+n va $\frac{a}{b}$ab
b)Cho A=$\frac{10^{11}-1}{10^{12}-1}$1011−11012−1
B=$\frac{10^{10}+1}{10^{11}+1}$1010+11011+1
Hay so sanh A va B
Xin lỗi mink mới học lớp 5 thôi không giúp bạn được nhưng mong bạn vẫn k cho mink thank you very much!!!!
so sanh A va B biet
A=\(\frac{10^{2006}+1}{10^{2007}+1}\)
B=\(\frac{10^{2007}+1}{10^{2008}+1}\)
\(Tacó:10A=\frac{10\left(10^{2016}+1\right)}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)\(10B=\frac{10\left(10^{2017}+1\right)}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}+1}=\frac{9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\)\(Vì:1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)