Trước hết ta so sánh 10A và 10B
Ta có:
\(10A=\frac{10^{16}+10}{10^{16}+1}=1+\frac{9}{10^{16}+1}\) \(10B=\frac{10^{17}+10}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)
Vì: \(\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\) nên 10A > 10B, do đó A>B
Ta thấy:B<1 vì 1015+1<1016+1
Theo quy tắc :\(\frac{a}{b}\)<\(\frac{a+m}{b+m}\)nên ta có: B =\(\frac{10^{16}+1}{10^{17}+1}\)<\(\frac{10^{16}+1+9}{10^{17}+1+9}\)<\(\frac{10^{16}+10}{10^{17}+10}\)<\(\frac{10\left(10^{15}+1\right)}{10\left(10^{16}+1\right)}\)=A
Suy ra B<A
trước hết ta so sánh 10A và 10B
10A =10^16+10/10^16+1 10B=10^17+10/10^17+1
10A=1+9/10^16+1 10B=1+9/10^17 +1
mà 1=1;9/10^16+1>9/10^17+1 nên 10A>10B nên A>B
bạn ơi, làm sao mà lớn hơn được, A=B mà
Ta có :
10A = \(\frac{10\left(10^{15}+1\right)}{10^{16}+1}\) = \(\frac{10^{16}+10}{10^{16}+1}\) = \(\frac{10^{16}+1+10}{10^{16}+1}\) = \(\frac{10^{16}+1}{10^{16}+1}\) + \(\frac{9}{10^{16}+1}\) = 1 + \(\frac{9}{10^{16}+1}\)
10B = \(\frac{10\left(10^{16}+1\right)}{10^{17}+1}\) = \(\frac{10^{17}+10}{10^{17}+1}\) = \(\frac{10^{17}+1+9}{10^{17}+1}\) = \(\frac{10^{17}+1}{10^{17}+1}\) + \(\frac{9}{10^{17}+1}\) = 1 + \(\frac{9}{10^{17}+1}\)
Vì \(\frac{9}{10^{16}+1}\) > \(\frac{9}{10^{17}+1}\) \(\Rightarrow\) 1 + \(\frac{9}{10^{16}+1}\) > 1 + \(\frac{9}{10^{17}+1}\)
\(\Rightarrow\) 10A > 10B
\(\Rightarrow\) A > B
Vậy A > B