Tìm x
a)x.(x-2)=0
b)x2+2012.x=0
c)4.(x+1)-3.(x+1)=14
d)x2-9<0
e)l x+4 l . l x+5 l > 0
f)1+2+3+....+x=1275
Tìm x
a, 3/4x*(x2-9)=0
b, x3-16x=0
c, (x-1)(x+2)-x-2=0
d, 3x3-27x=0
e, x2(x+1)+2x(x+1)=0
f, x(2x-3)-2(3-2x)=0
c: =>(x-1)(x+1)=0
hay \(x\in\left\{1;-1\right\}\)
a,
\(=\dfrac{3}{4x}.\left(x-3\right)\left(x+3\right)\)=0
\(\left\{{}\begin{matrix}\dfrac{3}{4x}=0\\x-3=0\\x+3=0\end{matrix}\right.\)
=>\(x=\left\{3,-3\right\}\)
b,
\(x^3-16x=0\\x\left(x^2-16\right)\\ x\left(x-4\right)\left(x+4\right)\)
\(\left\{{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)
=>\(x=\left\{-4,0,4\right\}\)
d,
\(3x^3-27x=0\\ 3x\left(x^2-9\right)=0\\ 3x\left(x-3\right)\left(x+3\right)=0\)
\(\left\{{}\begin{matrix}3x=0\\x-3=0\\x+3=0\end{matrix}\right.\)
=>\(x=\left\{-3,0,3\right\}\)
e,
\(x^2+\left(x+1\right)+2x\left(x+1\right)=0\\ x\left(x+1\right)\left(x+2\right)=0\)
\(\left\{{}\begin{matrix}x=0\\x+1=0\\x+2=0\end{matrix}\right.\)
=>\(x=\left\{-2,-1,0\right\}\)
f,
\(x\left(2x-3\right)-2\left(3-2x\right)=0\\ \left(2x-3\right)\left(x+2\right)=0\)
\(\left\{{}\begin{matrix}2x-3=0\\x+2=0\end{matrix}\right.\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
Tìm x biết:
a) x4-6x2+9=0
b) 8x3+12x2+6x-63=0
c) (3-2x)2-25=0
d) 6.(x+1)2-2.(x+1)3+2.(x-1).(x2+x+1)=1
e) (x-2)2-(x-2).(x+2)=0
f) x2-4x+4=25
Giải Giúp mình nha.Cảm ơn
a.
$x^4-6x^2+9=0$
$\Leftrightarrow (x^2-3)^2=0$
$\Leftrightarrow x^2-3=0$
$\Leftrightarrow x^2=3$
$\Leftrightarrow x=\pm \sqrt{3}$
b.
$8x^3+12x^2+6x-63=0$
$\Leftrightarrow (8x^2+12x^2+6x+1)-64=0$
$\Leftrightarrow (2x+1)^3=64=4^3$
$\Leftrightarrow 2x+1=4$
$\Leftrightarrow x=\frac{3}{2}$
c. $(3-2x)^2-25=0$
$\Leftrightarrow (3-2x)^2-5^2=0$
$\Leftrightarrow (3-2x-5)(3-2x+5)=0$
$\Leftrightarrow (-2-2x)(8-2x)=0$
$\Leftrightarrow -2-2x=0$ hoặc $8-2x=0$
$\Leftrightarrow x=-1$ hoặc $x=4$
d.
$6(x+1)^2-2(x+1)^3+2(x-1)(x^2+x+1)=1$
$\Leftrightarrow (x+1)^2[6-2(x+1)]+2(x^3-1)=1$
$\Leftrightarrow (x+1)^2(4-2x)+2x^3-3=0$
$\Leftrightarrow 6x+1=0$
$\Leftrightarrow x=\frac{-1}{6}$
e. $(x-2)^2-(x-2)(x+2)=0$
$\Leftrightarrow (x-2)[(x-2)-(x+2)]=0$
$\Leftrightarrow (x-2)(-4)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
f. $x^2-4x+4=25$
$\Leftrightarrow (x-2)^2=5^2=(-5)^2$
$\Leftrightarrow x-2=5$ hoặc $x-2=-5$
$\Leftrightarrow x=7$ hoặc $x=-3$
Tìm x :
a) x (3x + 1) + (x -1)2 - (2x + 1)(2x -1) = 0
b) (x + 1)3 + (2 - x)3 - 9(x - 3)(x+3) = 0
c) (x - 1)3 - (x + 3)(x2 - 3x + 9) + 3x2 = 25
d) (x + 2)3 - ( x +1)(x2 - x + 1) - 6(x - 1)2 = 23
e) (x + 3)(x2 - 3x + 9) - x(x - 2)(x+2) + 11 = 0
f) x(x - 3) - x + 3 = 0
Lời giải:
a. $x(3x+1)+(x-1)^2-(2x+1)(2x-1)=0$
$\Leftrightarrow (3x^2+x)+(x^2-2x+1)-(4x^2-1)=0$
$\Leftrightarrow 3x^2+x+x^2-2x+1-4x^2+1=0$
$\Leftrightarrow (3x^2+x^2-4x^2)+(x-2x)+(1+1)=0$
$\Leftrightarrow -x+2=0$
$\Leftrightarrow x=2$
b.
$(x+1)^3+(2-x)^3-9(x-3)(x+3)=0$
$\Leftrightarrow [(x+1)+(2-x)][(x+1)^2-(x+1)(2-x)+(2-x)^2]-9(x-3)(x+3)=0$
$\Leftrightarrow 3[x^2+2x+1-(x-x^2+2)+(x^2-4x+4)]-9(x-3)(x+3)=0$
$\Leftrightarrow 3(3x^2-3x+3)-9(x^2-9)=0$
$\Leftrightarrow 9(x^2-x+1)-9(x^2-9)=0$
$\Leftrightarrow 9(x^2-x+1-x^2+9)=0$
$\Leftrightarrow 9(-x+10)=0$
$\Leftrightarrow -x+10=0\Leftrightarrow x=10$
c.
$(x-1)^3-(x+3)(x^2-3x+9)+3x^2=25$
$\Leftrightarrow (x^3-3x^2+3x-1)-(x^3+3^3)+3x^2=25$
$\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2=25$
$\Leftrightarrow (x^3-x^3)+(-3x^2+3x^2)+3x-28=25$
$\Leftrightarrow 3x-28=25$
$\Leftrightarrow x=\frac{53}{3}$
d.
$(x+2)^3-(x+1)(x^2-x+1)-6(x-1)^2=23$
$\Leftrightarrow (x^3+6x^2+12x+8)-(x^3+1)-6(x^2-2x+1)=23$
$\Leftrightarrow x^3+6x^2+12x+8-x^3-1-6x^2+12x-6=23$
$\Leftrightarrow (x^3-x^3)+(6x^2-6x^2)+(12x+12x)+(8-1-6)=23$
$\Leftrightarrow 24x+1=23$
$\Leftrgihtarrow 24x=22$
$\Leftrightarrow x=\frac{11}{12}$
e.
$(x+3)(x^2-3x+9)-x(x-2)(x+2)+11=0$
$\Leftrightarrow x^3+3^3-x(x^2-4)+11=0$
$\Leftrightarrow x^3+27-x^3+4x+11=0$
$\Leftrightarrow (x^3-x^3)+4x+(27+11)=0$
$\Leftrightarrow 4x+38=0$
$\Leftrightarrow x=\frac{-19}{2}$
f.
$x(x-3)-x+3=0$
$\Leftrightarrow x(x-3)-(x-3)=0$
$\Leftrightarrow (x-3)(x-1)=0$
$\Leftrightarrow x-3=0$ hoặc $x-1=0$
$\Leftrightarrow x=3$ hoặc $x=1$
Tìm x∈Z, biết:
a)x.(x-6)=0
b)(-7-x).(-x+5)=0
c)(x+3).(x-7)=0
d)(x-3).(x2+12)=0
e)(x+1).(2-x) ≥0
f)(x-3).(x-5) ≤0
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
c) => \(\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
Giải các phương trình sau:
a, x2 - 9x +20 = 0
b, x2 - 3x - 18 = 0
c, 2x2 - 9 x + 9 = 0
d, 3x2 - 8x + 4 = 0
e, 3x3 - 6x2 - 9x = 0
f, x(x - 5) - 2 + x = 0
g, x3 + 32 + 6x +8 = 0
h, 2x(x - 2) - 2 + x = 0
i, 5x(1 - x) + x - 1 = 0
k, 4 - 9(x - 1)2 = 0
l, (x - 2)2 - 36(x + 3)2 = 0
\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)
d: \(\Leftrightarrow3x^2-6x-2x+4=0\)
=>(x-2)(3x-2)=0
=>x=2 hoặc x=2/3
e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)
=>x(x-3)(x+1)=0
hay \(x\in\left\{0;3;-1\right\}\)
f: \(\Leftrightarrow x^2-5x-2+x=0\)
\(\Leftrightarrow x^2-4x-2=0\)
\(\Leftrightarrow\left(x-2\right)^2=6\)
hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)
a)9x2 – 49 = 0
b)(x – 1)(x + 2) – x – 2 = 0
c)(4x + 1)(x - 2) - (2x -3)(2x + 1) = 7
d)x(3x + 2) + (x + 1)2 – (2x – 5)(2x + 5) = 0
e)(x + 3)(x2 – 3x + 9) –x(x – 1)(x + 1) – 27 = 0
f)(4x-3)^2-3x(3-4x)=0
\(a,\Leftrightarrow\left(3x-7\right)\left(3x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{7}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\ c,\Leftrightarrow4x^2-7x-2-4x^2+4x+3=7\\ \Leftrightarrow-3x=6\Leftrightarrow x=-2\\ d,\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=0\\ \Leftrightarrow4x=-26\Leftrightarrow x=-\dfrac{13}{2}\\ e,\Leftrightarrow x^3+27-x^3+x-27=0\\ \Leftrightarrow x=0\\ f,\Leftrightarrow\left(4x-3\right)\left(4x-3+3x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)
a) 9x2-49=0
(3x)2-72=0
<=> (3x-7)(3x+7)=0
th1: 3x-7=0
<=>3x=7
<=>x=\(\dfrac{7}{3}\)
th2: 3x+7=0
<=>3x=-7
<=>x=\(-\dfrac{7}{3}\)
Tìm x biết:
1,
a,3x(x+1) - 2x(x+2) = -x-1
b,2x(x-2020) - x+2020 = 0
c,(x-4)2 - 36 = 0
d,x2 + 8x - 16 = 0
e,x(x+6) - 7x - 42 = 0
f,25x2 - 16 = 0
2,
a,3x3 - 12x = 0
b,x2 + 3x - 10 = 0
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Giúp mình 4 câu này với :<
Bài 1: Tìm x
a) 2x(x - 3) + x - 3 = 0
b) x2 (x - 6) - x2 + 36 = 0
c) 5 - 6x + x2 = 0
d) x(x + 5) + x(x + 15) = 0
Cảm ơn các bạn nhaaaa
a: Ta có: \(2x\left(x-3\right)+x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
b: Ta có: \(x^2\left(x-6\right)-x^2+36=0\)
\(\Leftrightarrow\left(x-6\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=3\\x=-2\end{matrix}\right.\)
Tìm x biết:
a, 16x² – 9(x + 1)²= 0
b, x2 (x – 1) – 4x2 + 8x – 4 = 0
c, x(2x – 3) – 2(3 – 2x) = 0
d, (x – 3)(x² + 3x + 9) – x(x + 2)(x – 2) = 1
e, 4x² + 4x – 6 = 2
f, 2x² + 7x + 3 = 0
e: ta có: \(4x^2+4x-6=2\)
\(\Leftrightarrow4x^2+4x-8=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
f: Ta có: \(2x^2+7x+3=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Giải các phương trình sau:
a/ (3x – 2)(4x + 5) = 0
b/ (2,3x – 6,9)(0,1x + 2) = 0
c/ (4x + 2)(x2 + 1) = 0
d/(2x + 7)(x – 5)(5x + 1) = 0
e/ (x – 1)(2x + 7)(x2 + 2) = 0
f/ (3x + 2)(x2 – 1) = (9x2 – 4)(x + 1)
a) \(\left(3x-2\right)\left(4x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{2}{3};-\dfrac{5}{4}\right\}\)
b) \(\left(2,3x-6,9\right)\left(0,1x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-20\end{matrix}\right.\)
c) \(\left(4x+2\right)\left(x^2+1\right)=0\)
Vì \(x^2+1\ge1>0\forall x\)
\(\Rightarrow4x+2=0\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)
d) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+7=0\\x-5=0\\5x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{7}{2};5;-\dfrac{1}{5}\right\}\)
e) \(\left(x-1\right)\left(2x+7\right)\left(x^2+2\right)=0\)
Vì \(x^2+2\ge2>0\forall x\)
\(\Rightarrow\left(x-1\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
f) \(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)
\(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\left(x+1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[\left(3x+2\right)\left(x+1\right)\right].\left(x-1-3x+2\right)=0\)
\(\Leftrightarrow\left(3x^2+5x+2\right)\left(-2x+1\right)=0\)
\(\Leftrightarrow\left(3x^2+3x+2x+2\right)\left(-2x+1\right)=0\)
\(\Leftrightarrow\left[3x\left(x+1\right)+2\left(x+1\right)\right]\left(-2x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x+2\right)\left(-2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x+2=0\\-2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{-1;-\dfrac{2}{3};\dfrac{1}{2}\right\}\)