Chứng minh rằng:
a) x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 với mọi x, y, z
b) x2 + 5y2 + 2x - 4xy - 10y + 14 > 0 với mọi x, y
\(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1>0\forall x;y\)
\(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)
Chúc bạn học tốt.
chứng minh -x^2+4xy-5y^2-8y-18 luôn âm với mọi x
tìm giá trị nhỏ nhất của x^2+4xy+2y^2-22y+173
\(-x^2+4xy-5y^2-8y-18\)
\(=-\left(x^2-4xy+4y\right)-\left(y^2+8y+16\right)-2\)
\(=-\left(x+2y\right)^2-\left(y+4\right)^2-2\)
Vì \(-\left(x+2y\right)^2\le0;-\left(y+4\right)^2\le\forall x;y\)
\(\Rightarrow-\left(x+2y\right)^2-\left(y+4\right)^2-2< 0\forall x;y\)
\(\Rightarrow dpcm\)
a) \(-x^2+4xy-5y^2-8y-18=-\left(x^2-4xy+5y^2+8y+18\right)\)
\(=-\left[\left(x^2-4xy+4y^2\right)+\left(y^2+8y+16\right)+2\right]\)
\(=-\left[\left(x-2y\right)^2+\left(y+4\right)^2+2\right]\)
Vì \(\left(x-2y\right)^2\ge0\forall x,y\); \(\left(y+4\right)^2\ge0\forall y\); \(2>0\)
\(\Rightarrow\left(x-2y\right)^2+\left(y+4\right)^2+2>0\)
\(\Rightarrow-\left[\left(x-2y\right)^2+\left(y+4\right)^2+2\right]< 0\)
\(\Rightarrow-x^2+4xy-5y^2-8y-18\)luôn âm với mọi x ( đpcm )
Cho x,y lớn hơn hoặc bằng 0 và x.y=4
chứng minh: 2x+8y lớn hơn hoặc bằng 16
Áp dụng bất đẳng thức cho 2 số dương 2x và 8y ta có:
2x+8y\(\ge\)2\(\sqrt{2x.8y}\)=2\(\sqrt{16xy}\)
Mà x.y=4 => 2x+8y \(\ge\)2\(\sqrt{2x.8y}\)=2\(\sqrt{16.4}\)
=> 2.8=16
Vậy 2x+8y\(\ge\)16
Chứng minh rằng
2x^2+5y^2+2x-4xy-y+2>0 với mọi x, y
Giải chi tiết giùm mình ạ!
=x^2+2x+1+4y^2-4xy+x^2+y^2-y+1/4+3/4
=(x+1)^2+(2y-x)^2+(y-1/2)^2+3/4>=3/4>0 với mọi x,y
a, Chứng minh rằng (a-1) x (a-2) x (a-3) x (a-4) + 1 lớn hơn hoặc bằng 0 với mọi a thuộc R
b, Cho x + 2 x y = 5 . Chứng minh rằng x2 + y2 lớn hơn hoặc bằng 5
Chứng minh:
x2 + 5y2 + 2x - 4xy - 10y + 14 > 0 với mọi x, y.
Đặt \(A=x^2+5y^2+2x-4xy-10y+14\)
\(A=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)
\(A=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(A=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0\)
\(\Rightarrow A>0\left(đpcm\right)\)
Bài 1
a) \(x^2+x+1\) lớn hơn 0 với mọi x
b)\(-4x^2-4x-2\) nhỏ hơn 0 với mọi x
c)\(x^2+4y^2+z^2-2x-6z+8y+15\) lớn hơn 0 với mọi x, y, z
d)\(x^2+xy+y^2+1\) lớn hơn 0
e)\(x^2+5y^2+2x-4xy-10y+14\) lớn hơn 0
f) \(5x^2+10y^2-6xy-4x-2y+3\) lớn hơn 0
g)\(x^4+x^2+2\) lớn hơn 0
h) \(\left(x+3\right)\left(x-11\right)+2017\) lớn hơn 0
Câu a mình chắc chắn là đúng vì mình làm rồi.
Chúc bạn học tốt.
b) \(-4x^2-4x-2\) <0 với mọi x
\(=-\left(4x^2+4x+2\right)\)
\(=-\left[\left(2x^2\right)+2.2x.1+1^2+2\right]\)
\(=-\left[\left(2x+1\right)^2+2\right]\)
\(=-\left(2x+1\right)^2-2\)
Nx : \(-\left(2x+1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(2x+1\right)^2-2< 0\) với mọi x
\(\Rightarrow-4x^2-4x-2< 0\) với mọi x
Làm được cái nào thì hay cái đó nha :''>>
e/ \(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-6y+9\right)+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left[\left(x-2y\right)^2+2\left(x-2y\right).1+1^2\right]+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\) (1)
Vì \(\left\{{}\begin{matrix}\left(x-2y+1\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) \(\forall x\in R\)
=> (1) > 0
Vậy......
Chứng minh rằng:
a/x2 + xy + y2 + 1 > 0 với mọi x, y
b/x2 + 5y2 + 2x - 4xy - 10y + 14 > 0 với mọi x, y.
a/ \(x^2+xy+y^2+1\)=\(\left(x^2+2x\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)
=\(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\) \(\ge\)0
vậy....
b
4. Tìm giá trị lớn nhất của các biểu thức a. A = 5 – 8x – x2 b. B = 5 – x2 + 2x – 4y2 – 4y 5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0 6. Chứng minh rằng: a. x2 + xy + y2 + 1 > 0 với mọi x, y b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z 7. Chứng minh rằng: x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.