Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
poppy Trang
Xem chi tiết
Nguyễn Thành Trương
24 tháng 1 2020 lúc 11:06

Violympic toán 9

Khách vãng lai đã xóa
Nguyễn Thành Trương
24 tháng 1 2020 lúc 11:00

Hỏi đáp Toán

Khách vãng lai đã xóa
Nguyễn Thành Trương
24 tháng 1 2020 lúc 11:13

Violympic toán 9

Khách vãng lai đã xóa
Nguyễn Thành Trung
Xem chi tiết
Trịnh Trường Giang
19 tháng 10 2021 lúc 16:31

tự làm đi

Khách vãng lai đã xóa
Nguyễn Cao Nhật Anh
Xem chi tiết
Hương Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2023 lúc 13:20

4:

x+3y=4m+4 và 2x+y=3m+3

=>2x+6y=8m+8 và 2x+y=3m+3

=>5y=5m+5 và x+3y=4m+4

=>y=m+1 và x=4m+4-3m-3=m+1

x+y=4

=>m+1+m+1=4

=>2m+2=4

=>2m=2

=>m=1

3:

x+2y=3m+2 và 2x+y=3m+2

=>2x+4y=6m+4 và 2x+y=3m+2

=>3y=3m+2 và x+2y=3m+2

=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3

A Lan
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 9 2020 lúc 19:54

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y+1}=b\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=a^2\\y=b^2-1\end{matrix}\right.\)

\(\Rightarrow\sqrt{2\left(a^2-b^2+1\right)^2+6\left(b^2-1\right)-2a^2+4}=a+b\)

\(\Leftrightarrow2\left(a^2-b^2+1\right)^2+6b^2-2a^2-2=\left(a+b\right)^2\)

\(\Leftrightarrow2\left(a^2-b^2\right)^2+4\left(a^2-b^2\right)+2+6b^2-2a^2-2=\left(a+b\right)^2\)

\(\Leftrightarrow2\left(a^2-b^2\right)^2+2a^2+2b^2=\left(a+b\right)^2\)

Ta có:

\(VT=2\left(a^2-b^2\right)^2+2a^2+2b^2\ge2a^2+2b^2\ge\left(a+b\right)^2=VP\)

Dấu "=" xảy ra khi và chỉ khi \(a=b\)

\(\Leftrightarrow x=y+1\)

Thay vào pt đầu:

\(\sqrt{3-y}+\sqrt{y+8}=y^2+7y+6\)

\(\Leftrightarrow y^2+5y+1+\left(y+2-\sqrt{3-y}\right)+\left(y+3-\sqrt{y+8}\right)=0\)

\(\Leftrightarrow y^2+5y+1+\frac{y^2+5y+1}{y+2+\sqrt{3-y}}+\frac{y^2+5y+1}{y+3+\sqrt{y+8}}=0\)

Tùng
Xem chi tiết
Nue nguyen
Xem chi tiết
tơn nguyễn
Xem chi tiết
tơn nguyễn
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2021 lúc 11:54

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) thì pt đầu trở thành:

\(\dfrac{a^2-b^2}{2}-4b^2+3b=a\Leftrightarrow a^2-9b^2+6b=2a\)

\(\Leftrightarrow\left(a-3b\right)\left(a+3b\right)-2\left(a-3b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a+3b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=3b\\a=2-3b\end{matrix}\right.\) \(\Rightarrow...\)