cho 2 tam giác MNB tia phân giác ND của góc MNB ( D thuộc MB ), từ DH vuông góc NB,
a, CMR tam giác MNB= tam giác END
b, CMR góc MNP = góc EDK
em cảm ơn trước ạ
gửi nhanh em tick ạ
giúp em vs mai em thì rồi
giúp em nhanh câu B ạ
cho tam giác ABC vuông tại A . kẻ AD là phân giác của góc ABC
a ) biết BC = 5cm ; AB = 3cm . tính AC vaf AD
b) qua D kẻ DH vuông góc vs BC tại H . CMR : tam giác ABC ~ vs tam giác HDC
a: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(AD=\dfrac{2\cdot3\cdot4}{3+4}\cdot cos45=\dfrac{12}{7}\sqrt{2}\left(cm\right)\)
b: Sửa đề: vuông góc AC
Xét ΔABC vuông tại A và ΔHDC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHDC
Cho đoạn thẳng AB, D là trung điểm AB. Kẻ Dx vuông góc với AB. Trên Dx lấy hai điểm M và N (M nằm giữa D và N). CMR
a/ Tam giác NAD = tam giác NBD
b/ tam giác MNA = tam giác MNB
c/ ND là phân giác của góc ANB
d/ góc AMB luôn lớn hơn góc ANB
Xét tam giác NAD và tam giác NBD
có AD=DB(GT)
góc ADN=góc NDB = 900
ND chung
suy ra tam giác NAD = tam giác NBD (c.g.c)
b) Xét tam giác MAN và tam giác MNB
có MA=MB (GT)
AN=NB (GT)
MN chung
suy ra tam giác MAN = tam giác MNB (c.c.c)
c) theo câu b tam giác MAN = tam giác MNB (c.c.c) suy ra góc AND = góc BND
suy ra ND là tia phân giác của góc ANB
d) góc AMD là góc ngoài tại đỉnh N của tam giác AMN suy ra góc AMD> góc AND
góc BMD là góc ngoài tại đỉnh N của tam giác BMN suy ra góc BMD> góc BND
suy ra góc AMD + góc BMD > góc AND + góc BND
hay góc AMB > góc ANB
Cho tam giác MNP vuông tại M , góc MNP =60 độ . Trên canh NP lấy D sao cho NM = ND . Từ D kẻ đường thẳng vuông góc vs NP cắt MP tại A
a, CMR : NA là tia phân giác của góc MNP
b, tam giác NMD là tam giác gì ? vì sao
c, CMR : Tam giác NAP cân tại A và D là trung điểm NP
d, Trên tia đối MN lấy B sao cho MB = DP . CMR : tam giác APB cân tại A
e, CMR : D,A,B thẳng hàng
f, CMR : MD // BP
AI LÀM NHANH MÌNH TICK NHA
GiẢi
a , Xét tam giác MNA và tam giác DNA có :
NM=ND (GT)
Góc NMA = góc NDA =90 độ
NA là cạnh chung
=> Tam giác MNA = tam giác DNA (c.g.c)
=> Góc MNA =góc DNA ( hai góc tương ứng)
=. NA là tia phân giác của góc MNP
b, Tam giác MND là tâm giác đều vì mỗi góc đều có só đo = 60 độ
d,Xetstam giác MBA và tam giác DPA có :
BM=DP(GT)
góc MAB = góc DPA ( đối đỉnh)
MA=DA (hai cạnh tương ứng của tam giác MNA=tam giác DNA)
=> Tam giác MBA = tam giác DPA (c.g.c)
=> AB=PA ( hai cạnh tương ứng)
=> Tam giác APB cận tại A
e, AD vuông góc với NP
BD vuông góc với NP
=. D,A,B thẳng hàng
Cho tam giác MNP vuông tại M , góc MNP =60 độ . Trên canh NP lấy D sao cho NM = ND . Từ D kẻ đường thẳng vuông góc vs NP cắt MP tại A
a, CMR : NA là tia phân giác của góc MNP
b, tam giác NMD là tam giác gì ? vì sao
c, CMR : Tam giác NAP cân tại A và D là trung điểm NP
d, Trên tia đối MN lấy B sao cho MB = DP . CMR : tam giác APB cân tại A
e, CMR : D,A,B thẳng hàng
f, CMR : MD // BP
a) Xét ΔNAM vuông tại M và ΔNDA vuông tại D có
NA chung
NA=ND(gt)
Do đó: ΔNAM=ΔNDA(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{MNA}=\widehat{DNA}\)(hai góc tương ứng)
mà tia NA nằm giữa hai tia NM,NDnên NA là tia phân giác của \(\widehat{NMD}\)hay NA là tia phan giác của \(\widehat{NMP}\)(đpcm)b) Xét ΔNMD có NM=ND(gt)nên ΔNMD cân tại N(Định nghĩa tam giác cân)Xét ΔNMD cân tại N có \(\widehat{MND}=60^0\)(gt)nên ΔNMD đều(Dấu hiệu nhận biết tam giác đều)c) Ta có: ΔNMP vuông tại M(gt)nên \(\widehat{NMP}+\widehat{MPN}=90^0\)(hai góc nhọn phụ nhau)\(\Leftrightarrow\widehat{MPN}=90^0-\widehat{NMP}=90^0-60^0=30^0\)(1)Ta có: NA là tia phân giác của \(\widehat{MNP}\)(cmt)nên \(\widehat{PNA}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^0}{2}=30^0\)(2)Từ (1) và (2) suy ra \(\widehat{APN}=\widehat{ANP}\)Xét ΔANP có \(\widehat{APN}=\widehat{ANP}\)(cmt)nên ΔANP cân tại A(Định lí đảo của tam giác cân)Ta có: ΔANP cân tại A(gt)mà AD là đường cao ứng với cạnh đáy NP(gt)nên AD là đường trung tuyến ứng với cạnh NP(Định lí tam giác cân)hay D là trung điểm của NP(đpcm)Cho đoạng thẳng AB, D là trung điểm của AB. Kẻ Dx vuông góc với AB. Trên tia Dx lấy 2 điểm M và N
C/m: a)tam giác NAD = tam giác NBD
b) tam giác MNA = tam gics MNB
c) ND là phân giác của góc ANB
d)góc AMB > góc ANB
Bạn tự vẽ hình nha
a) xét ∆NAD và ∆NBD có
ND cạnh chung
AD=AB (d là trung điểm của AB )
Góc NDA = góc NDB(=90°)
=>∆NAD=∆NBD(C-G-C)
b) xét ∆MNA và ∆MNB có
MN cạnh chung
Góc MNA = góc MNB (vì ∆NAD=∆NBD )
NA =NB (vì ∆NAD=∆NBD)
=>∆MNA=∆MNB(c-g-c)
c) ta có ∆NAD=∆NBD (cmt)
=>góc AND =góc BND (2 GÓC TƯƠNG ỨNG )
=>ND LÀ TIA PHÂN GIÁC CỦA GÓC ANB
cho tam giác mnp vuông tại m tia phân giác góc n cắt mp tại d vẽ DH vuông góc NP chứng minh rằng a, MD=DH b, góc MDN = góc HDN
MN ƠI GIÚP EM Ạ MAI E KIỂM TRA HỌC KÌ RÙI Ạ
HELP ME
Hình bạn tự vẽ nhé
a. Xét hai tam giác vuông MND và tam giác vuông HND có
góc NMD = góc NHD = 90độ
cạnh ND chung
góc MND = góc HND [ vì ND là pg góc N ]
Do đó ; tam giác MND = tam giác HND [ cạnh huyền - góc nhọn ]
\(\Rightarrow\) MD = HD
b. Theo câu a ; tam giác MND = tam giác HND
\(\Rightarrow\)góc MDN = góc HDN
HỌC TỐT
a,xét hai tam giác :tam giác NDM và tam giác NDH
có :ND là cạnh chung
góc N1=góc N2
Do đó tam giác NDM=tam giác NDH (cạnh huyền -góc nhọn)
b,Theo câu a,tam giác NDM=tam giác NDH
=> Góc MDN=góc HDN
Cho hình vuông ABCD. Trên cạnh AB lấy điểm M. Vẽ BH vuông góc với CM. Nối DH. Vẽ HN vuông góc DH (N thuộc BC)
CMR: tam giác DHC đồng dạng với tam giác NHB
Mọi người giúp em với ạ! Em cảm ơn!
Đồng dạng theo TH góc góc
góc HCD= góc NBH(Phụ HCB)
góc DHC=góc BHN(Phụ CHN)
Nhớ k
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC (H ∈ BC).Gọi M là trung điểm của BH.Trên tia đối của của tia MA lấy điểm N sao cho MN=MA.
a,chứng minh tam giác AMH bằng tam giác MNB và NB vuông góc với BC.
b,chứng minh AH=NB từ đó suy ra NB<AB
. c,chứng minh góc BAM nhỏ hơn góc góc MAH.
d,Gọi I là trung điểm của NC.Chứng minh A,H,I thẳng hàng
a) Xét hai tam giác AMH và NMB có:
MA = MN (gt)
MB = MH (M là trung điểm BH)
ˆAMH=ˆBMNAMH^=BMN^ (đối đỉnh)
⇒ΔAMH=ΔNMB(c.g.c)⇒ΔAMH=ΔNMB(c.g.c)
Vì ΔAMH=ΔNMB(c.g.c)ΔAMH=ΔNMB(c.g.c) nên góc H = góc B
Mà ˆH=900H^=900 nên ˆB=ˆH=900B^=H^=900 (yttu)
Do đó BC⊥NBBC⊥NB
b) Ta có AH = NB (do ΔAMH=ΔNMB(c.g.c)ΔAMH=ΔNMB(c.g.c))
Vì AH là đường cao của tam giác cân ABC nên AH < AB
Do đó NB < AB
c) Ta có ˆMAH=ˆMNBMAH^=MNB^ (do ΔAMH=ΔNMB(c.g.c)ΔAMH=ΔNMB(c.g.c))
Vì NB < AB nên góc BAM < góc MNB (quan hệ góc và cạnh đối diện trong tam giác ABN)
Do đó góc BAM < góc MAH
d) Vì tam giác ABC cân tại A có AH vuông BC nên AH đồng thời là đường trung trực BC
Mặt khác, I nằm trên đường trung trực BC nên A, H, I thẳng hàng
a) Xét ΔAMH và ΔNMB có
MA=MN(gt)
\(\widehat{AMH}=\widehat{NMB}\)(hai góc đối đỉnh)
MH=MB(M là trung điểm của BH)
Do đó: ΔAMH=ΔNMB(c-g-c)
a) Ta có: ΔAMH=ΔNMB(cmt)
nên \(\widehat{AHM}=\widehat{NBM}\)(hai góc tương ứng)
mà \(\widehat{AHM}=90^0\)(AH\(\perp\)BC)
nên \(\widehat{NBM}=90^0\)
hay NB\(\perp\)BC(đpcm)
Cho tam giác MNP vuông góc tại M, kẻ đường trung tuyến MA. Gọi D là trung điểm của MN, E đối xứng A qua D
a) CMR: E đối xứng A qua MN
b) Tứ giác MENA là hình gì? Vì sao?
a: Xét ΔMNP có NA/NP=ND/NM
nên DA//MP
=>DA vuông góc với NM
=>EA vuông góc với NM
mà EA cắt NM tại trung điểm của EA
nên E đối xứng A qua MN
b: Xét tứ giác MENA có
D là trung điểm chung của MN và EA
AN=AM
Do đó: MENA là hình thoi