tìm x đểA=2
A=(4x/x2-4 - x/x-2). x+2/2x-x2
thankkkkkkkkk
a/ 2b -√b2−4b+4b−2
b/ |x+4| - x+4√x2+8x+16
c/√4−4a+a2−2a với -4 ≤x≤ 2
d/|x+4| - x+4√x2+8x+16
e/√4x^2-4x+1/2x-1với x<1/2
f/|x|+x√x2
với x>0
Bài 2: Phân tích đa thức thành nhân tử
a) x2−xy+5y−25
b) xy−y2−3x+3y
c) x2(x−3)−4x+12
d) 2a(x+y)−x−y
e) 2x−4+5x2−10x
g) 10ax−5ay−2x+y
h) a2−2a+1−b2
a) x2-xy+5y-25
= x(2-y)+ 5(y-2)
= x(2-y)-5(2-y)
= (x-5)(2-y)
h: \(=\left(a-1-b\right)\left(a-1+b\right)\)
Bài 10. Tìm a để
a) Đa thức 4x\(^2\) - 6x + a chia hết cho đa thức x - 3
b) Đa thức 2x\(^2\) + x + a chia hết cho đa thức x + 3
tìm x:
a)3(2x-3)+2(2-x)=-3
b)2x(x2-2)+x2(1-2x)-x2=-12
c)3x(2x+3)-(2x+5)(3x-2)=8
d)4x(x - 1) - 3(x2-5)-x2=(x-3)-(x+4)
e)2(3x-1)(2x+5)-6(2x-1)(x+2)=-6
a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(\Leftrightarrow6x-9+4-2x=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
Bài 1: Tính
a) (2x – 3).(x + 2) – x.(x + 1) b) 5.(x2 – y2) – (x – y).(x + y)
c) 2.(1 – x2) + (3x + 1).(x - 2) d) 4x.(x + y) – (2x - y)2
e) 2a(a+1)-(2a2-1) f) 4(x+2)2+(3+2x)(3-2x)
g) (x3 - 3x2 + x - 3):( x - 3) h) (2x4 - 5x2 + x3 – 3 - 3x):(x2 - 3)
\(a,=2x^2+x-6-x^2-x=x^2-6\\ b,=5x^2-5y^2-x^2+y^2=4x^2-4y^2\\ c,=2-2x^2+3x^2-6x+x-2=x^2-5x\\ d,=4x^2+4xy-4x^2+4xy-y^2=8xy-y^2\\ e,=2a^2+2a-2a^2+1=2a+1\\ f,=4x^2+16x+16+9-4x^2=16x+25\\ g,=\left[x^2\left(x-3\right)+\left(x-3\right)\right]:\left(x-3\right)=x^2+1\\ h,=\left(2x^4-6x^2+x^3-3x+x^2-3\right):\left(x^2-3\right)\\ =\left[2x^2\left(x^2-3\right)+x\left(x^2-3\right)+\left(x^2-3\right)\right]:\left(x^2-3\right)\\ =2x^2+x+1\)
A= 4x/x2-4+1/x+2-2/X-2
a, rút gọ biểu thức A
b,tìm giá trị của biểu thức A khi x=4
Lời giải:
a. ĐKXĐ: $x\neq \pm 2$
\(A=\frac{4x}{x^2-4}+\frac{x-2}{(x-2)(x+2)}-\frac{2(x+2)}{(x-2)(x+2)}\)
\(=\frac{4x+(x-2)-2(x+2)}{(x-2)(x+2)}=\frac{3x-6}{(x-2)(x+2)}=\frac{3(x-2)}{(x-2)(x+2)}=\frac{3}{x+2}\)
b.
Khi $x=4$ thì: $A=\frac{3}{4+2}=\frac{1}{2}$
tìm x biết:
a, (x - 1)3 + (2 - x) (4 + 2x + x2) + 3x (x + 2) = 16
b, 8 (x - \(\dfrac{1}{2}\)) (x2 + \(\dfrac{1}{2}\)x + \(\dfrac{1}{4}\)) - 4x (1 - x - 2x2) = - 2
a: Ta có: \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=16\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=16\)
\(\Leftrightarrow9x+7=16\)
\(\Leftrightarrow9x=9\)
hay x=1
BT1 Làm Tính Nhân
a) (-4x+2).(x-5)
b) (x-3).(x+3)
c) (x+3.(x2-3x+9)
d) (2x-1).(-x-3)
e) (2a+1).(4a2-2a+1)
f) (-x-1).(x+2).(x-3)
a: \(=-4x^2+20x+2x-10=-4x^2+22x-10\)
b: =x^2-9
c: =x^3+27
d: \(=-2x^2-6x+x+3=-2x^2-5x+3\)
e: =8a^3+1
f: =(3-x)(x+1)(x+2)
=(3-x)(x^2+3x+2)
=3x^2+9x+6-x^3-3x^2-2x
=-x^3+7x+6
Tìm x biết:
a, 16x² – 9(x + 1)²= 0
b, x2 (x – 1) – 4x2 + 8x – 4 = 0
c, x(2x – 3) – 2(3 – 2x) = 0
d, (x – 3)(x² + 3x + 9) – x(x + 2)(x – 2) = 1
e, 4x² + 4x – 6 = 2
f, 2x² + 7x + 3 = 0
e: ta có: \(4x^2+4x-6=2\)
\(\Leftrightarrow4x^2+4x-8=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
f: Ta có: \(2x^2+7x+3=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)