Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Vân Anh
Xem chi tiết
Hồng Phúc
17 tháng 12 2020 lúc 19:55

ĐK: \(x\ge\dfrac{1}{3}\)

\(2x^2+3x-4=\left(4x-3\right)\sqrt{3x-1}\)

\(\Leftrightarrow16x^2+24x-32=8\left(4x-3\right)\sqrt{3x-1}\)

\(\Leftrightarrow\left(4x-3\right)^2+16\left(3x-1\right)-8\left(4x-3\right)\sqrt{3x-1}=25\)

\(\Leftrightarrow\left(4x-3-4\sqrt{3x-1}\right)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-3-4\sqrt{3x-1}=5\\4x-3-4\sqrt{3x-1}=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x-1}=x-2\\2\sqrt{3x-1}=2x+1\end{matrix}\right.\)

TH1: \(\sqrt{3x-1}=x-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-1=\left(x-2\right)^2\\x-2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-7x+6=0\\x\ge2\end{matrix}\right.\)

\(\Leftrightarrow x=6\left(tm\right)\)

TH2: \(2\sqrt{3x-1}=2x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}4\left(3x-1\right)=\left(2x+1\right)^2\\2x+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-8x+5\\x\ge-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\) vô nghiệm

Vậy \(x=6\)

Nguyễn Việt Lâm
5 tháng 4 2022 lúc 17:55

ĐKXĐ: \(x\ge-\dfrac{1}{2}\)

\(2x^2+4x+3=3\sqrt{\left(x^2+x+1\right)\left(2x+1\right)}\)

\(\Leftrightarrow2\left(x^2+x+1\right)+\left(2x+1\right)-3\sqrt{\left(x^2+x+1\right)\left(2x+1\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{2x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow2a^2+b^2-3ab=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=\sqrt{2x+1}\\2\sqrt{x^2+x+1}=\sqrt{2x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=2x+1\\4\left(x^2+x+1\right)=2x+1\end{matrix}\right.\)

\(\Leftrightarrow...\)

Hoàng Khải Anh
Xem chi tiết
๖²⁴ʱんuリ イú❄✎﹏
19 tháng 2 2020 lúc 9:10

\(a,\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)

\(\left(x-1\right)\left(5x+3-3x+8\right)=0\)

\(\left(x-1\right)\left(2x+11\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\2x=-11\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=-\frac{11}{2}\end{cases}}}\)

Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
19 tháng 2 2020 lúc 9:14

\(b,3x\left(25x+15\right)-35\left(5x+3\right)=0\)

\(15x\left(5x+3\right)-35\left(5x+3\right)=0\)

\(\left(5x+3\right).5\left(3x-7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5x+3=0\\5\left(3x-7\right)=0\end{cases}\Rightarrow\orbr{\begin{cases}5x=-3\\3x-7=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\3x=7\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\x=\frac{7}{3}\end{cases}}}\)

Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
19 tháng 2 2020 lúc 9:18

\(c,\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)

\(\left(3x-2\right)\left(2-5x\right)+\left(3x-2\right)\left(x+11\right)=0\)

\(\left(3x-2\right)\left(2-5x+x+11\right)=0\)

\(\left(3x-2\right)\left(13-4x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-2=0\\13-4x=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=2\\4x=13\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{13}{4}\end{cases}}}\)

còn đâu tự lm lười :_# 

Khách vãng lai đã xóa
5. Nguyễn Lê Minh Cường
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 15:31

Chọn D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 8 2019 lúc 8:21

a) Kết quả M = (x + l)(2x - 3);

b) Kết quả M = (2x - 1)(x - 2).

chauu nguyễn
Xem chi tiết
Trường Nguyễn Công
9 tháng 11 2021 lúc 16:33

a) x2(2x3-4x+3)
= 2x5-4x3+3x2
 

Lê Phan Thảo Đan
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 10:14

\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)

\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)

Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 10:20

\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)

Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)

 

Phạm Minh Đức
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 12 2021 lúc 7:05

\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)

Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)

Do đó \(x\in\left\{1;2\right\}\)

Nguyễn Hoàng Minh
10 tháng 12 2021 lúc 7:07

\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)

Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)

Vậy PT có nghiệm \(x=4\)

Trần Dung
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 12 2021 lúc 20:36

a: \(=15x^5-25x^4+15x^3\)

b: \(=2x^3+10x^2-8x-x^2-5x+4\)

\(=2x^3+9x^2-13x+4\)