2x2 + 3x - 4 = (4x - 3)\(\sqrt{3x-1}\)
2x2+3x-4=(4x-3)\(\sqrt{3x-1}\)
ĐK: \(x\ge\dfrac{1}{3}\)
\(2x^2+3x-4=\left(4x-3\right)\sqrt{3x-1}\)
\(\Leftrightarrow16x^2+24x-32=8\left(4x-3\right)\sqrt{3x-1}\)
\(\Leftrightarrow\left(4x-3\right)^2+16\left(3x-1\right)-8\left(4x-3\right)\sqrt{3x-1}=25\)
\(\Leftrightarrow\left(4x-3-4\sqrt{3x-1}\right)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-3-4\sqrt{3x-1}=5\\4x-3-4\sqrt{3x-1}=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x-1}=x-2\\2\sqrt{3x-1}=2x+1\end{matrix}\right.\)
TH1: \(\sqrt{3x-1}=x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-1=\left(x-2\right)^2\\x-2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-7x+6=0\\x\ge2\end{matrix}\right.\)
\(\Leftrightarrow x=6\left(tm\right)\)
TH2: \(2\sqrt{3x-1}=2x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(3x-1\right)=\left(2x+1\right)^2\\2x+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-8x+5\\x\ge-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\) vô nghiệm
Vậy \(x=6\)
2x2 +4x+3=3\(\sqrt{2x^3+3x^2+3x+1}\)
ĐKXĐ: \(x\ge-\dfrac{1}{2}\)
\(2x^2+4x+3=3\sqrt{\left(x^2+x+1\right)\left(2x+1\right)}\)
\(\Leftrightarrow2\left(x^2+x+1\right)+\left(2x+1\right)-3\sqrt{\left(x^2+x+1\right)\left(2x+1\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{2x+1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow2a^2+b^2-3ab=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=\sqrt{2x+1}\\2\sqrt{x^2+x+1}=\sqrt{2x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=2x+1\\4\left(x^2+x+1\right)=2x+1\end{matrix}\right.\)
\(\Leftrightarrow...\)
a. (x – 1)(5x + 3) = (3x – 8)(x – 1)
b. 3x(25x + 15) – 35(5x + 3) = 0
c. (2 – 3x)(x + 11) = (3x – 2)(2 – 5x)
d. (2x2 + 1)(4x – 3) = (2x2 + 1)(x – 12)
e. (2x – 1)2 + (2 – x)(2x – 1) = 0
f. (x + 2)(3 – 4x) = x2 + 4x + 4
\(a,\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
\(\left(x-1\right)\left(5x+3-3x+8\right)=0\)
\(\left(x-1\right)\left(2x+11\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\2x=-11\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=-\frac{11}{2}\end{cases}}}\)
\(b,3x\left(25x+15\right)-35\left(5x+3\right)=0\)
\(15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\left(5x+3\right).5\left(3x-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x+3=0\\5\left(3x-7\right)=0\end{cases}\Rightarrow\orbr{\begin{cases}5x=-3\\3x-7=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\3x=7\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\x=\frac{7}{3}\end{cases}}}\)
\(c,\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)
\(\left(3x-2\right)\left(2-5x\right)+\left(3x-2\right)\left(x+11\right)=0\)
\(\left(3x-2\right)\left(2-5x+x+11\right)=0\)
\(\left(3x-2\right)\left(13-4x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\13-4x=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=2\\4x=13\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{13}{4}\end{cases}}}\)
còn đâu tự lm lười :_#
Kết quả rút gọn biểu thức (x + 2)(x + 3) + (x – 1)2
A.2x2 + 4x + 7.
B.2x2 + 3x + 6.
C.2x2 + 4x + 6.
D.2x2 + 3x + 7.
Trong mỗi đẳng thức sau, hãy tìm đa thức M:
a) 3 x 2 − 2 x − 5 M = 3 x − 5 2 x − 3 với x ≠ − 1 và x ≠ 3 2 ;
b) 2 x 2 + 3 x − 2 x 2 − 4 = M x 2 − 4 x + 4 với x ≠ ± 2 .
a) Kết quả M = (x + l)(2x - 3);
b) Kết quả M = (2x - 1)(x - 2).
Bài 1: Thực hiện phép tính
a) x2 .( 2x3 – 4x + 3) b) (3x – 4)(x + 4) + (5 – x)(2x2 + 3x – 1)
c) d) e)
e)
tìm gtnn (gtln) của:
a) A= 4x2-4x+10 b) B= 2x2-3x-1
c) C= 4x2+2y2+4xy+4x+6y+1 d) D= (3x-1)2-4(3x-1)x+4x2
e) G= 9x2+2y2+6xy+4y+5 f) H= 2x2+3y2-2xy+4y+2x+5
g) K= xy+yz+zx; biết x+y+z= 3
nhờ mn giúp mik vs nha
\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)
\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)
\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)
Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)
giải phương trình : a) 2x2 -3x + 2 = x\(\sqrt{3x-2}\)
b) (\(\sqrt{x}\)+ 1)2 = 3( 2\(\sqrt{x}\) - 1) - \(\sqrt{4-x}\)
mong mọi người giúp mình câu này nha :>
\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)
Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)
Do đó \(x\in\left\{1;2\right\}\)
\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)
Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)
Vậy PT có nghiệm \(x=4\)
Bài 1: Thực hiện phép tính
a)5x3(3x2 – 5x + 3) c)x2 ( 2x3 – 4x + 3)
b) -1\(\dfrac{1}{2}\)x22x – 1)(x2 + 5x – 4) d) (3x – 4)(2x + 4) + (5 – x)(2x2 + 3x – 2)
a: \(=15x^5-25x^4+15x^3\)
b: \(=2x^3+10x^2-8x-x^2-5x+4\)
\(=2x^3+9x^2-13x+4\)