ĐK: \(x\ge\dfrac{1}{3}\)
\(2x^2+3x-4=\left(4x-3\right)\sqrt{3x-1}\)
\(\Leftrightarrow16x^2+24x-32=8\left(4x-3\right)\sqrt{3x-1}\)
\(\Leftrightarrow\left(4x-3\right)^2+16\left(3x-1\right)-8\left(4x-3\right)\sqrt{3x-1}=25\)
\(\Leftrightarrow\left(4x-3-4\sqrt{3x-1}\right)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-3-4\sqrt{3x-1}=5\\4x-3-4\sqrt{3x-1}=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x-1}=x-2\\2\sqrt{3x-1}=2x+1\end{matrix}\right.\)
TH1: \(\sqrt{3x-1}=x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-1=\left(x-2\right)^2\\x-2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-7x+6=0\\x\ge2\end{matrix}\right.\)
\(\Leftrightarrow x=6\left(tm\right)\)
TH2: \(2\sqrt{3x-1}=2x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(3x-1\right)=\left(2x+1\right)^2\\2x+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-8x+5\\x\ge-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\) vô nghiệm
Vậy \(x=6\)