Phương trình chứa căn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Thị Vân Anh

2x2+3x-4=(4x-3)\(\sqrt{3x-1}\)

Hồng Phúc
17 tháng 12 2020 lúc 19:55

ĐK: \(x\ge\dfrac{1}{3}\)

\(2x^2+3x-4=\left(4x-3\right)\sqrt{3x-1}\)

\(\Leftrightarrow16x^2+24x-32=8\left(4x-3\right)\sqrt{3x-1}\)

\(\Leftrightarrow\left(4x-3\right)^2+16\left(3x-1\right)-8\left(4x-3\right)\sqrt{3x-1}=25\)

\(\Leftrightarrow\left(4x-3-4\sqrt{3x-1}\right)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-3-4\sqrt{3x-1}=5\\4x-3-4\sqrt{3x-1}=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x-1}=x-2\\2\sqrt{3x-1}=2x+1\end{matrix}\right.\)

TH1: \(\sqrt{3x-1}=x-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-1=\left(x-2\right)^2\\x-2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-7x+6=0\\x\ge2\end{matrix}\right.\)

\(\Leftrightarrow x=6\left(tm\right)\)

TH2: \(2\sqrt{3x-1}=2x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}4\left(3x-1\right)=\left(2x+1\right)^2\\2x+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-8x+5\\x\ge-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\) vô nghiệm

Vậy \(x=6\)


Các câu hỏi tương tự
Kiên M
Xem chi tiết
Nguyen
Xem chi tiết
tuấn nguyễn
Xem chi tiết
Thắng
Xem chi tiết
Nguyễn Ngọc Trâm
Xem chi tiết
My My
Xem chi tiết
Nguyễn Ngọc Trâm
Xem chi tiết
Hoàng Thống
Xem chi tiết
Hồ Văn Cảnh
Xem chi tiết