Giải PT: $(3x-1)\sqrt{3x-1}-4x^3+9x^2-7x=0$
Giải phương trình:
\(4x-9+2\sqrt{x^2+x+7}=\sqrt{3x-2}+\sqrt{x-1}\)
Nhanh với. Gấp lắm
Giải pt:
\(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\) \(x^2+3x+4=\left(x+3\right)\sqrt{x^2+x+2}\)
\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\) \(15x^2+2\left(x+1\right)\sqrt{x+2}=2-5x\)
giải pt \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3x^2-3x+3}-\sqrt{x^2-3x+4}\)
\(\begin{cases}4x^3-4x^2-7x=\left(3y^2-6y+4\right)\sqrt{3y^2-6y+7}\\\left(x^3-3x^2\right)\left(\sqrt{x^2+\left(y-1\right)^2}+3\right)+8=\left(x^2+y^2-2y\right)^2-7\left(x^2+y^2-2y\right)\end{cases}\)
a,\(\sqrt{ }\)2x+3 + \(\sqrt{ }\)x+1 = 3x + 2\(\sqrt{ }\)(2x+3)(x+1)
b, \(\sqrt{ }\)3x -2 + \(\sqrt{ }\)x-1 = 4x -9 +2\(\sqrt{ }\)3x²-5x+2
c, \(\sqrt{ }\)x+2\(\sqrt{ }\)x-1 - \(\sqrt{ }\)x-2\(\sqrt{ }\)x-1 =-2
d, \(\sqrt{ }\)x² +12 + 5= 3x + \(\sqrt{ }\)x² +5
Giai pt:
a, \(x^2+\sqrt[3]{x^4-x^2}=2x+1\)
b, \(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\)
c, \(\sqrt{2x^2+7x+10}+\sqrt{2x^2+x+4}=3\left(x+1\right)\)
d, \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
Mong moi nguoi giup do, em can gap !!!
\(x^3+7+\sqrt{3-2x}=7x+\sqrt{3x+1}\)
\(\sqrt{\left(x-y\right)^2+4x+3}-\sqrt{x+1}=\sqrt{y}\)
\(\sqrt{y}+\sqrt{1-x}=2y^2+3x\)
Giải hệ phương trình.