Bài 7: Phương trình quy về phương trình bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trương Thị Thanh Thúy

2x+4x+3=3\(\sqrt{2x^3+3x^2+3x+1}\)

Nguyễn Việt Lâm
5 tháng 4 2022 lúc 17:55

ĐKXĐ: \(x\ge-\dfrac{1}{2}\)

\(2x^2+4x+3=3\sqrt{\left(x^2+x+1\right)\left(2x+1\right)}\)

\(\Leftrightarrow2\left(x^2+x+1\right)+\left(2x+1\right)-3\sqrt{\left(x^2+x+1\right)\left(2x+1\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{2x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow2a^2+b^2-3ab=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=\sqrt{2x+1}\\2\sqrt{x^2+x+1}=\sqrt{2x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=2x+1\\4\left(x^2+x+1\right)=2x+1\end{matrix}\right.\)

\(\Leftrightarrow...\)


Các câu hỏi tương tự
long bi
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thái Viết Nam
Xem chi tiết
Mai Thị Thanh Xuân
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
34 9/10 Chí Thành
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
hsrhsrhjs
Xem chi tiết