(15x^5y^2+25x^4y^2+30x^2y^)/5x^3y^2
Làm phép chia:
\(a,15x^3y^5z:5x^2y^3\)
\(b,12x^4y^2:\left(-9xy^2\right)\)
\(c,\left(30x^4y^3-25x^2y^3-3x^4y^4\right):5x^2y^3\)
\(d,\left(4x^4-8x^2y^2+12x^5y\right):\left(-4x^2\right)\)
a, 15x3y5z : 5x2y3 = 3xy2z.
b, 12x4y2 : ( - 9xy2 ) = \(\frac{3}{4}x^3\).
c, ( 30x4y3 - 25x2y3 - 3x4y4 ) : 5x2y3 = \(6x^2-5-\frac{3}{5}x^2y.\)
d, ( 4x4 - 8x2y2 + 12x5y ) : ( - 4x2 ) = -x2 + 2y2 - 3x3y.
Làm phép chia:
\(a,15x^3y^5z:5x^2y^3\)
\(b,12x^4y^2:\left(-9xy^2\right)\)
\(c,\left(30x^4y^3-25x^2y^3-3x^4y^4\right):5x^2y^3\)
\(d,\left(4x^4-8x^2y^2+12x^5y\right):\left(-4x^2\right)\)
a: \(=\dfrac{15}{5}\cdot\dfrac{x^3}{x^2}\cdot\dfrac{y^5}{y^3}\cdot z=3xy^2z\)
b: \(=-\dfrac{4}{3}x^3\)
c: \(=\dfrac{30x^4y^3}{5x^2y^3}-\dfrac{25x^2y^3}{5x^2y^3}-\dfrac{3x^4y^4}{5x^2y^3}\)
\(=6x^2-5-\dfrac{3}{5}x^2y\)
d: \(=\dfrac{4x^4}{-4x^2}+\dfrac{8x^2y^2}{4x^2}-\dfrac{12x^5y}{4x^2}\)
\(=-x^2+2y^2-3x^3y\)
kết quả phép chia (25x^5y - 20x^3y^2 - 5x^3y) : 5x^3y là:
A.5x^2y - 4y - x B.5x^2 + 4y C. 5x^2 - 4y D.5x^2 - 4y - 1
Đề bài: khai triển -> tổng quát
a, x22 + 6x + 9
b, 25x2 - 30x + 9
c, ( 2x - 3y ).( 2x + 3y )
d, ( x + 2y ).( x2 - 2xy + 4y2 )
e, 27x3 + 54x2 + 36x + 8
f, ( 3x - 5y ).( 9x2 + 15xy + 25y2 )
g, x3 - 15x2 + 75x - 125
a) x2 + 6x + 9 = (x + 3)2
b) 25x2 - 30x + 9 = (5x - 3)2
c) (2x - 3y)(2x + 3y) = (2x)2 - (3y)2 = 4x2 - 9y2
d) (x + 2y)(x2 + 2xy + 4y2) = (x + 2y)3
e) 27x3 + 54x2 + 36x + 8
Bài này chủ yếu là dùng HĐT
a) \(x^2+6x+9=\left(x+3\right)^2\)
b) \(25x^2-30x+9=\left(5x-3\right)^2\)
c) \(\left(2x-3y\right)\left(2x+3y\right)=4x^2-9y^2\)
d) \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=x^2-4y^2\)
e) \(27x^3+54x^2+36x+8=\left(3x\right)^3+3.\left(3x\right)^2.2+3.3x.2^2+2^3=\left(3x+2\right)^3\)
f) \(\left(3x-5y\right)\left(9x^2+15xy+25y^2\right)=\left(3x-5y\right)\left[\left(3x\right)^2+3x.5y+\left(5y\right)^2\right]=\left(3x\right)^3-\left(5y\right)^3=27x^3-125y^3\)
g) \(x^3-15x^2+75x-125=x^3-3.x^2.5+3.x.5^2-5^3=\left(x-5\right)^3\)
bài 1 : thực hiện phép tính
a) (4x - 1)(2 - x)-(2x-1)^2
b) (15x^4y^5-30x^3y^4+35x^3y^4): (5x^3y^3)
a) (4x-1)(2-x)-(2x-1)2
= 8x-4x2-2+x-(4x2-4x+1) = -8x2+13x-3
b) (15x4y5-30x3y4+35x3y4):(5x3y3)
= 3xy2-6y+7y = 3xy2+y
a: \(=8x-4x^2-2+2x-4x^2+4x-1\)
\(=-8x^2+14x-3\)
1)4x^5y^2-8x^4y^2+4x^3y^2 2)5x^4y^2-10x^3y^2+5x^2y^2 3)12x^2-12xy+3y^2 4)8x^3-8x^2y+2xy^2 5)20x^4y^2-20x^3y^3+5x^2y^4
1) \(4x^5y^2-8x^4y^2+4x^3y^2\)
\(=4x^3y^2\left(x^2-2x+1\right)\)
\(=4x^3y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)
\(=4x^3y^2\left(x-1\right)^2\)
2) \(5x^4y^2-10x^3y^2+5x^2y^2\)
\(=5x^2y^2\left(x^2-2x+1\right)\)
\(=5x^2y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)
\(=5x^2y^2\left(x-1\right)^2\)
3) \(12x^2-12xy+3y^2\)
\(=3\left(4x^2-4xy+y^2\right)\)
\(=3\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=3\left(2x-y\right)^2\)
4) \(8x^3-8x^2y+2xy^2\)
\(=2x\left(4x^2-4xy+y^2\right)\)
\(=2x\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=2x\left(2x-y\right)^2\)
5) \(20x^4y^2-20x^3y^3+5x^2y^4\)
\(=5x^2y^2\left(4x^2-4xy+y^2\right)\)
\(=5x^2y^2\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=5x^2y^2\left(2x-y\right)^2\)
1: 4x^5y^2-8x^4y^2+4x^3y^2
=4x^3y^2(x^2-2x+1)
=4x^3y^2(x-1)^2
2: \(=5x^2y^2\left(x^2-2x+1\right)=5x^2y^2\left(x-1\right)^2\)
3: \(=3\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)^2\)
4: \(=2x\left(4x^2-4xy+y^2\right)=2x\left(2x-y\right)^2\)
5: \(=5x^2y^2\left(4x^2-4xy+y^2\right)=5x^2y^2\left(2x-y\right)^2\)
a) (25x^5 – 5x^4 + 10x^2) : 5x^2 ; b) (15x^3y^2- 6x^2y – 3x^2y^2) : 6x^2y
a) (25x^5 – 5x^4 + 10x^2) : 5x^2
= (25x^5 : 5x^2) – (5x^4 : 5x^2) + (10x^2 : 5x^2)
= 5x^3 – x^2 + 2
b) (15x^3y^2- 6x^2y – 3x^2y^2) : 6x^2y
= (15x^3y^2 : 6x^2y) + (-6x^2y : 6x^2y) + (- 3x^2y^2 : 6x^2y)
=\(\frac{15}{6}xy-1-\frac{3}{6}y\)
=\(\frac{5}{2}xy-1-\frac{1}{2}y\)
Chứng minh đẳng thức: \(\dfrac{3x-2y}{5x-3y}=\dfrac{15x^2-xy-6y^2}{25x^2-9y^2}\)
Xét:
\(\left(3x-2y\right)\left(25x^2-9y^2\right)\)
\(=\left(3x-2y\right)\left(5x-3y\right)\left(5x+3y\right)\)
\(=\left(5x-3y\right)\left(15x^2+9xy-10xy-6y^2\right)\)
\(=\left(5x-3y\right)\left(15x^2-xy-6y^2\right)\)
Từ đó dễ dàng suy ra tích chéo = nhau => đpcm
ta có : \(VP=\dfrac{15x^2-xy-6y^2}{25x^2-9y^2}=\dfrac{\left(3x-2y\right)\left(5x+3y\right)}{\left(5x-3y\right)\left(5x+3y\right)}=\dfrac{3x-2y}{5x-3y}=VT\)
BT4: Thu gọn, chỉ ra phần hệ số và tìm bậc của các đơn thức sau:
a, 3/5x^2y^5x^3y^2.-2/3
b, (3/4x^2y^3)(2 2/5x^4)
c, (12/15x^4y^5)(5/9x^2y)
d, (-1/7x^2y)(-14/5x^4y^5)
a: =-2/5x^5y^7
Hệ số: -2/5
bậc: 12
b: =3/4*x^2y^3*12/5x^4=9/5x^6y^3
Hệ số: 9/5
bậc: 9
c: =4/9x^6y^6
hệ số: 4/9
bậc: 12
d: =2/5x^6y^6
hệ số: 2/5
bậc: 12