đồ thị hàm số y = mx đi qua điểm B(3,4) . Tính m
cho hàm số y= mx+m-1.tìm m để
a) Đồ thị hàm số đi qua điểm A(-3; -1).
b) Đồ thị hàm số cắt trục tung tại điểm có tung độ là 2.
c) Đồ thị hàm số cắt trục hoành tại điểm có hoành độ là 3.
a. Để đồ thị qua A
\(\Rightarrow-1=-3m+m-1\)
\(\Leftrightarrow m=0\)
b. Để đồ thị cắt trục tung tại điểm có tung độ 2
\(\Rightarrow m-1=2\)
\(\Leftrightarrow m=3\)
c. Để đồ thị cắt trục hoành tại điểm có hoành độ 3
\(\Rightarrow0=3m+m-1\)
\(\Leftrightarrow m=\dfrac{1}{4}\)
Cho hàm số:y=mx^2 a,Tìm m biết đồ thị hàm số đi qua điểm (-1;5) b,Vẽ đồ thị hàm số với m tìm được
Cho hàm số y = mx + 3m - 1
a) Định m để đồ thị hàm số đi qua gốc tọa độ .
b) Tìm tọa độ của điểm mà đường thẳng luôn đi qua với mọi m
\(a,\Leftrightarrow x=0;y=0\Leftrightarrow3m-1=0\Leftrightarrow m=\dfrac{1}{3}\\ b,\text{Gọi điểm cố định mà đt luôn đi qua với mọi m là }A\left(x_0;y_0\right)\\ \Leftrightarrow y_0=mx_0+3m-1\\ \Leftrightarrow m\left(x_0+3\right)-\left(y_0+1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=-1\end{matrix}\right.\Leftrightarrow A\left(-3;-1\right)\\ \text{Vậy }A\left(-3;-1\right)\text{ là điểm cố định mà đt đi qua với mọi m}\)
Cho hàm số y = m x – 3 m + 2. Tìm m để đồ thị hàm số đi qua điểm A (2; −3)
A. m = 3
B. m = 4
C. m = 5
D. m = 6
Thay x = 2 ; y = − 3 v à o y = m x – 3 m + 2 ta được
m . 2 – 3 m + 2 = − 3 ⇔ − m = − 5 ⇔ m = 5
Đáp án cần chọn là: C
cho hàm số y=mx+1 trong đó m là tham số
a, Tìm m để đồ thị hàm số đi qua điểm A (1; 4)
b, Tìm m để đồ thị hàm số song song với đường thẳng : y = m^2x + m+1
làm ơn giải chi tiết giúp mik vs ạ
a: Thay x=1 và y=4 vào y=mx+1, ta được:
\(m\cdot1+1=4\)
=>m+1=4
=>m=3
b: Để hai đường thẳng này song song với nhau thì
\(\left\{{}\begin{matrix}m^2=m\\m\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2-m=0\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\left(m-1\right)=0\\m\ne1\end{matrix}\right.\)
=>m=0
tìm m thỏa mãn yêu cầu bài toán
a) đồ thị hàm số \(y=\dfrac{mx-1}{2x+m}\) có đường tiệm cận đứng đi qua điểm A (-1;\(\sqrt{2}\))
b) đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)
c) biết đồ thị hàm số \(y=\dfrac{\left(m+1\right)x+2}{x-n+1}\) nhận trục hoành và trục tung làm 2 đường tiệm cận. Tính m+n
d) đồ thị hàm số \(y=\dfrac{x-1}{x^2+2\left(m-1\right)x+m^2-2}\) có 2 đường tiệm cận đứng
a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{mx-1}{2x+m}=\lim\limits_{x\rightarrow+\infty}\dfrac{m-\dfrac{1}{x}}{2+\dfrac{m}{x}}=\dfrac{m}{2}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{mx-1}{2x+m}=\lim\limits_{x\rightarrow-\infty}\dfrac{m-\dfrac{1}{x}}{2+\dfrac{m}{x}}=\dfrac{m}{2}\)
Vậy: x=m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{mx-1}{2x+m}\)
Để x=m/2 đi qua \(A\left(-1;\sqrt{2}\right)\) thì \(\dfrac{m}{2}=-1\)
=>\(m=-1\cdot2=-2\)
b: \(\lim\limits_{x\rightarrow-\infty}\dfrac{x-2}{2x-m}=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\dfrac{2}{x}}{2-\dfrac{m}{x}}=\dfrac{1}{2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{2x-m}=\lim\limits_{x\rightarrow+\infty}\dfrac{1-\dfrac{2}{x}}{2-\dfrac{m}{x}}=\dfrac{1}{2}\)
=>x=1/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)
=>Không có giá trị nào của m để đường thẳng x=1 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)
Cho hàm số y=mx-3
A, vẽ đồ thị hàm số khi m=1
B, tìm hàm số m . biết đồ thị đi qua M(3;6)
Lời giải:
a. Khi $m=1$ thì hàm số là: $y=x-3$
ĐTHS được minh họa dưới đây:
b. Để đths đi qua $M(3;6)$ thì:
$y_M=mx_M-3$
$\Leftrightarrow 6=3m-3$
$\Leftrightarrow 9=3m$
$\Leftrightarrow m=3$
Cho hàm số \(y=mx+m-6\left(m\ne0\right)\left(1\right)\).
1) Xác định m biết đồ thị hàm số (1) đi qua điểm M(2; 3). Vẽ đồ thị hàm số (1) với m vừa tìm được.
2) Tìm m để đồ thị hàm số (1) song song với đường thẳng \(y=3x+2\)
3) Chứng minh rằng đồ thị hàm số (1) luôn đi qua một điểm cố định với mọi giá trị của tham số m
1. Đồ thị của hàm số đi qua điểm \(M\left(2;3\right)\) nên giá trị hoành độ và tung độ của \(M\) là nghiệm của phương trình đường thẳng trên, tức:
\(3=m\cdot2+m-6\Leftrightarrow m=3\left(TM\right)\)
2. Đồ thị hàm số song song với đường thẳng \(\left(d\right):y=3x+2\), khi: \(\left\{{}\begin{matrix}m=3\\m-6\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne8\end{matrix}\right.\Rightarrow m=3\left(TM\right)\)
3. Gọi \(P\left(x_0;y_0\right)\) là điểm cố định mà đồ thị hàm số đi qua với mọi giá trị \(m\).
Khi đó: \(mx_0+m-6=y_0\Leftrightarrow\left(x_0+1\right)m-\left(y_0+6\right)=0\left(I\right)\)
Suy ra, phương trình \(\left(I\right)\) có vô số nghiệm, điều này xảy ra khi: \(\left\{{}\begin{matrix}x_0+1=0\\y_0+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-6\end{matrix}\right.\).
Vậy: Điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị \(m\) là \(P\left(-1;-6\right)\).