tìm số nghiệm của pt \(x^3+\sqrt[]{x^2-9}=\sqrt[]{9-x^2}+27\)
tìm nghiệm của PT
\(\sqrt{x^2-9}+\sqrt{x-3}=0\)
ĐKXĐ: \(x\ge3\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+1\right)=0\)
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(tm\right)\)(do \(\sqrt{x+3}+1\ge1>0\))
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+1\right)=0\)
hay x=3
Chứng minh rằng x=\(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)là nghiệm của pt \(x^5-3x-18=0.\)Từ đó tìm x
Đặt \(a=\sqrt[3]{9+4\sqrt{5}},b=\sqrt[3]{9-4\sqrt{5}}\)
\(\Rightarrow\hept{\begin{cases}a+b=x\\ab=1\end{cases}}\)
Ta có: \(x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Rightarrow x^3=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3.1.x\)
\(\Leftrightarrow x^3=18+3x\)
\(\Leftrightarrow x^3-3x-18=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+6\right)=0\)
Vì \(x^2+3x+6=\left(x+\frac{3}{2}\right)^2+\frac{15}{4}>0\)
\(\Rightarrow x-3=0\Leftrightarrow x=3\)
Thay x=3 vào \(x^5-3x-18=0\), thấy không thoả mãn.
KL: Đề sai !
Nghiệm nhỏ nhất của pt\(\frac{1}{2\sqrt{x}-2014}+\frac{1}{3\sqrt{x}+2013}=\frac{1}{2015-4\sqrt{x}}+\frac{1}{9\sqrt{x}-2016}\)
Tìm m để : pt \(3\sqrt{x-3}+m\sqrt{x+3}=2\sqrt[4]{x^2-9}\) có 2 nghiệm pb
Giải pt:
1. (\(\sqrt{9-x^2}\)-2x).(x\(^3\)+x\(^2\)-12x+10)=0 2. cos3x+2cos\(^2\)(x+\(\dfrac{\pi}{6}\))=1
Bài 2 Tìm tập xác định của hàm số y = \(\dfrac{\sqrt{1-sin2x}}{cos3x}\)
Bài 3 : cho pt (cosx+1)(cos-2x-mcosx)=msin\(^2\) x
tìm m để pt có đúng 2 nghiệm phân biệt thuộc \([0;\dfrac{2\pi}{3}\)\(]\)
bài 4: cho hàm số y= x\(^3\)-2mx\(^2\)+(7m-8)x-5m=10 có đồ thị (C\(_m\)) và đường thẳng d: y=x+m. tìm m để d cắt ( C\(_m\)) tai ba điểm phân biêt
giúp e với mn ơiiii
a) Tìm nghiệm của PT x2+px+q=0 biết các nghiệm là số nguyên và p+q=0
b) Giải PT \(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)
b) Ta có: \(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)
\(\Leftrightarrow\left|x-3\right|+\left|x+5\right|=8\)(*)
Trường hợp 1: x<-5
(*)\(\Leftrightarrow3-x-x-5=8\)
\(\Leftrightarrow-2-2x=8\)
\(\Leftrightarrow-2\left(1+x\right)=8\)
\(\Leftrightarrow1+x=-4\)
hay x=-5(loại)
Trường hợp 2: -5≤x≤3
(*)\(\Leftrightarrow3-x+x+5=8\)
\(\Leftrightarrow8=8\)
hay x∈[-5;3]
Trường hợp 2: x>3
(*)\(\Leftrightarrow x-3+x+5=8\)
\(\Leftrightarrow2x+2=8\)
\(\Leftrightarrow2x=6\)
hay x=3(loại)
Vậy: S=[-5;3]
\(p+q=0\Rightarrow q=-p\)
\(\Rightarrow x^2+px-p=0\) (1)
Do nghiệm pt là nguyên nên delta là SCP hay \(\Delta=p^2+4p=k^2\)
\(\Leftrightarrow\left(p+2\right)^2-4=k^2\Rightarrow\left(p+2\right)^2-k^2=4\)
\(\Rightarrow\left(p+2-k\right)\left(p+2+k\right)=4\)
Pt ước số cơ bản, bạn tự tính p sau đó thay vào (1) giải ra x, cái nào nguyên thì nhận
b/ \(\Leftrightarrow\sqrt{\left(3-x\right)^2}+\sqrt{\left(x+5\right)^2}=8\)
\(\Leftrightarrow\left|3-x\right|+\left|x+5\right|=8\)
Mặt khác ta có \(\left|3-x\right|+\left|x+5\right|\ge\left|3-x+x+5\right|=8\)
Dấu "=" xảy ra khi và chỉ khi \(\left(3-x\right)\left(x+5\right)\ge0\)
\(\Rightarrow-5\le x\le3\)
\(\Rightarrow\) Nghiệm của pt đã cho là \(-5\le x\le3\)
Cho biểu thức:
\(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3};x\ge0,x\ne9\)
1) Rút gọn biểu thức P.
2) Tính giá trị của P trong các trường hợp sau:
a) \(x=\dfrac{9}{4}\)
b) \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
3) Tìm x để \(\dfrac{1}{P}>\dfrac{5}{4}\)
1: Ta có: \(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
2)
a) Thay \(x=\dfrac{9}{4}\) vào P, ta được:
\(P=\left(\dfrac{3}{2}+2\right):\left(\dfrac{3}{2}+3\right)=\dfrac{7}{2}:\dfrac{11}{2}=\dfrac{7}{11}\)
b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=5+\sqrt{2}-4-\sqrt{2}\)
=1
Thay x=1 vào P, ta được:
\(P=\dfrac{1+2}{1+3}=\dfrac{3}{4}\)
1,Tìm m để pt có \(\sqrt{2x^2+mx}=3-x\)
a, 1 nghiệm
b, 2 nghiệm phân biệt
2,Tìm m để pt có 2 nghiệm phân biệt \(\sqrt{x+2}+\sqrt{6-x}-\sqrt{\left(x+2\right)\left(6-x\right)}=m\)
2.tìm x
a)\(\sqrt{x^2-6x+9}\)
b)\(\sqrt{x^2-2x+1}\)
c)\(\sqrt{4x+12}-3\sqrt{x+3}+7\sqrt{9x+27}=20\)
d)\(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=6\)
a) \(\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)
\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x
⇒x∈\(R\)
b) \(\sqrt{x^2-2x+1}\)
\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)
\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x
⇒x∈\(R\)