Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bống
Xem chi tiết
Lấp La Lấp Lánh
8 tháng 11 2021 lúc 21:14

ĐKXĐ: \(x\ge3\)

\(pt\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+1\right)=0\)

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(tm\right)\)(do \(\sqrt{x+3}+1\ge1>0\))

Nguyễn Lê Phước Thịnh
8 tháng 11 2021 lúc 21:15

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+1\right)=0\)

hay x=3

nguyễn Đào Quý Phú
Xem chi tiết
KCLH Kedokatoji
26 tháng 8 2020 lúc 9:32

Đặt \(a=\sqrt[3]{9+4\sqrt{5}},b=\sqrt[3]{9-4\sqrt{5}}\)

\(\Rightarrow\hept{\begin{cases}a+b=x\\ab=1\end{cases}}\)

Ta có: \(x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(\Rightarrow x^3=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3.1.x\)

\(\Leftrightarrow x^3=18+3x\)

\(\Leftrightarrow x^3-3x-18=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+6\right)=0\)

Vì \(x^2+3x+6=\left(x+\frac{3}{2}\right)^2+\frac{15}{4}>0\)

\(\Rightarrow x-3=0\Leftrightarrow x=3\)

Thay x=3 vào \(x^5-3x-18=0\), thấy không thoả mãn.

KL: Đề sai !

Khách vãng lai đã xóa
Nguyễn Tuấn
Xem chi tiết
Quang Huy Điền
Xem chi tiết
tanhuquynh
Xem chi tiết
Trần Hạo Thiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 7 2020 lúc 12:06

b) Ta có: \(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)

\(\Leftrightarrow\left|x-3\right|+\left|x+5\right|=8\)(*)

Trường hợp 1: x<-5

(*)\(\Leftrightarrow3-x-x-5=8\)

\(\Leftrightarrow-2-2x=8\)

\(\Leftrightarrow-2\left(1+x\right)=8\)

\(\Leftrightarrow1+x=-4\)

hay x=-5(loại)

Trường hợp 2: -5≤x≤3

(*)\(\Leftrightarrow3-x+x+5=8\)

\(\Leftrightarrow8=8\)

hay x∈[-5;3]

Trường hợp 2: x>3

(*)\(\Leftrightarrow x-3+x+5=8\)

\(\Leftrightarrow2x+2=8\)

\(\Leftrightarrow2x=6\)

hay x=3(loại)

Vậy: S=[-5;3]

Nguyễn Việt Lâm
10 tháng 7 2020 lúc 18:05

\(p+q=0\Rightarrow q=-p\)

\(\Rightarrow x^2+px-p=0\) (1)

Do nghiệm pt là nguyên nên delta là SCP hay \(\Delta=p^2+4p=k^2\)

\(\Leftrightarrow\left(p+2\right)^2-4=k^2\Rightarrow\left(p+2\right)^2-k^2=4\)

\(\Rightarrow\left(p+2-k\right)\left(p+2+k\right)=4\)

Pt ước số cơ bản, bạn tự tính p sau đó thay vào (1) giải ra x, cái nào nguyên thì nhận

b/ \(\Leftrightarrow\sqrt{\left(3-x\right)^2}+\sqrt{\left(x+5\right)^2}=8\)

\(\Leftrightarrow\left|3-x\right|+\left|x+5\right|=8\)

Mặt khác ta có \(\left|3-x\right|+\left|x+5\right|\ge\left|3-x+x+5\right|=8\)

Dấu "=" xảy ra khi và chỉ khi \(\left(3-x\right)\left(x+5\right)\ge0\)

\(\Rightarrow-5\le x\le3\)

\(\Rightarrow\) Nghiệm của pt đã cho là \(-5\le x\le3\)

Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 20:22

1: Ta có: \(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)

\(=\dfrac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)

2)

a) Thay \(x=\dfrac{9}{4}\) vào P, ta được:

\(P=\left(\dfrac{3}{2}+2\right):\left(\dfrac{3}{2}+3\right)=\dfrac{7}{2}:\dfrac{11}{2}=\dfrac{7}{11}\)

b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(=5+\sqrt{2}-4-\sqrt{2}\)

=1

Thay x=1 vào P, ta được:

\(P=\dfrac{1+2}{1+3}=\dfrac{3}{4}\)

Araku Ryn
Xem chi tiết
An Lâm Bảo
28 tháng 8 2021 lúc 9:32

hello

Khách vãng lai đã xóa
Dragon ball heroes Music
Xem chi tiết
Dragon ball heroes Music
18 tháng 9 2021 lúc 15:01

Mn giúp e với ak

Minh Hiếu
18 tháng 9 2021 lúc 15:06

a) \(\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)

\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x

⇒x∈\(R\)

b) \(\sqrt{x^2-2x+1}\)

\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)

\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x

⇒x∈\(R\)