Xác định m để pt sau có nghiệm
m\(\left(\sqrt{1+x^2}-\sqrt{1-x^2}+2\right)=2\sqrt{1-x^4}+\sqrt{1+x^2}-\sqrt{1-x^2}\)
Tìm giá trị nhỏ nhất của m để phương trình \(\sqrt[3]{x^4+2x^2+1}\) - 3\(\sqrt[3]{x^2+1+}+5-m=0\) có nghiệm
Tìm m : \(x^2-2x-3\sqrt{x^2-2x+5}=m\) có nghiệm ( dùng phương pháp bảng biến thiên, đồ thị )
Mình cảm ơn ạ !
Tìm tập xác định của các hàm số sau:
a) y=\(\sqrt{2x-3}\) b) y= \(\sqrt{\left|2x-3\right|}\) c) y= \(\sqrt{4-x}+\sqrt{x+1}\) d) y=\(\sqrt{x-1}+\frac{1}{x-3}\) e) y=\(\frac{1}{\left(x+2\right)\sqrt{x-1}}\)
f) y=\(\sqrt{x+3-2\sqrt{x+2}}\) g) y=\(\frac{\sqrt{5-2x}}{\left(x-2\right)\sqrt{x-1}}\) h) y=\(\sqrt{2x-1}+\sqrt{\frac{1}{3-x}}\) i) y= \(\sqrt{x+3}+\frac{1}{x^2-4}\)
Tìm tập xác định
a) \(y=\sqrt{2-x}+\dfrac{4}{\sqrt{x+4}}\)
b) \(y=\dfrac{\sqrt{2-x}+\sqrt{2+x}}{x}\)
c) \(y=\dfrac{x^2+\sqrt{2x-3}}{2-\sqrt{7-x}}\)
d) \(y=\dfrac{3}{x+2}+\sqrt{5x-2}\)
cho các hàm số sau. xét tính chẵn lẻ của chúng
a, \(y=\dfrac{\sqrt{x^2-9}}{\sqrt{3x-5}+\sqrt{15-2x}}\)
b, \(y=\dfrac{\sqrt[3]{3x^3+5}}{\sqrt{16-x^2}-\sqrt{3-x}}\)
c, \(y=\sqrt{2x^3+5x^2-4x+12}\)
Tìm x để hàm số có nghĩa:
f(x)=\(\sqrt{ }\) -x^3+4x + 1/\(\sqrt{ }\) -x^2 -x+2
Cho pt bậc hai x2 - 2mx + m2 - 2m + 4 = 0 (x là ẩn và m là tham số). Tìm tất cả các giá trị của m sao cho pt đã cho có 2 nghiệm ko âm x1, x2 . Tính theo m giá trị của biểu thức P= \(\sqrt{ }\)x1 + \(\sqrt{ }\)x2 và tìm giá trị nhỏ nhất của P
1)tìm tập xác định:
a) Y=\(\frac{\sqrt{3-2x}}{\sqrt{1-x}}+\frac{\sqrt{2x+1}}{x}\)
b)Y=\(\frac{\sqrt{3x+5}}{x-2}+\frac{\sqrt{2x+3}}{\sqrt{4-x}}\)