b) Tìm giá trịlớn nhất của biểu thức: 𝐵=5−4𝑥2+4𝑥
a) Tìm giá trị nhỏ nhất của biểu thức: 𝐴=(𝑥−1)(𝑥−3)+11
b) Tìm giá trịlớn nhất của biểu thức: 𝐵=5−4𝑥2+4𝑥
c) Cho 𝑥–𝑦=2. Tìm giá trịlớn nhất của đa thức 𝐵=𝑦2−3𝑥2
a) \(A=\left(x-1\right)\left(x-3\right)+11\)
\(=x\left(x-3\right)-\left(x-3\right)+11\)
\(=x^2-3x-x+3+11\)
\(=x^2-4x+14\)
\(=\left(x^2-4x+4\right)+10\)
\(=\left(x-4\right)^2+10\)
Vì \(\left(x-4\right)^2\) ≥ 0
⇒ A ≥ 10
Min A=10 ⇔ x=4
b) tương tự
7) a) Tìm giá trịnhỏnhất của biểu thức: 𝐴=(𝑥−1)(𝑥−3)+11
b) Tìm giá trịlớn nhất của biểu thức: 𝐵=5−4𝑥2+4𝑥
c) Cho 𝑥–𝑦=2. Tìm giá trịlớn nhất của đa thức 𝐵=𝑦2−3𝑥2
8) Tìm số𝑎đểđa thức 𝑥3−3𝑥2+5𝑥+𝑎chia hết cho đa thức 𝑥−2
\(7,\\ a,A=x^2-4x+3+11=\left(x-2\right)^2+10\ge10\\ \text{Dấu }"="\Leftrightarrow x=2\\ b,B=-\left(4x^2-4x+1\right)+6=-\left(2x-1\right)^2+6\le6\\ \text{Dấu }"="\Leftrightarrow x=\dfrac{1}{2}\\ c,x-y=2\Leftrightarrow x=y+2\\ \Leftrightarrow B=y^2-3x^2=y^2-3\left(y+2\right)^2\\ \Leftrightarrow B=y^2-3y^2-12y-12=-4y^2-12y-12\\ \Leftrightarrow B=-\left(4y^2+12y+9\right)-3=-\left(2y+3\right)^2-3\le-3\\ \text{Dấu }"="\Leftrightarrow y=-\dfrac{3}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(8,\\ \Leftrightarrow x^3-3x^2+5x+a=\left(x-2\right)\cdot a\left(x\right)\)
Thay \(x=2\Leftrightarrow8-12+10+a=0\Leftrightarrow a=-6\)
7) a) Tìm giá trịnhỏnhất của biểu thức: 𝐴=(𝑥−1)(𝑥−3)+11
b) Tìm giá trịlớn nhất của biểu thức: 𝐵=5−4𝑥2+4𝑥
c) Cho 𝑥–𝑦=2. Tìm giá trịlớn nhất của đa thức 𝐵=𝑦2−3𝑥2
8) Tìm số𝑎đểđa thức 𝑥3−3𝑥2+5𝑥+𝑎chia hết cho đa thức 𝑥−2
Bài 7:
a.
$A=(x-1)(x-3)+11=x^2-4x+3+11=x^2-4x+14$
$=(x^2-4x+4)+10=(x-2)^2+10\geq 10$
Vậy gtnn của $A$ là $10$ khi $x=2$
b.
$B=5-4x^2+4x=6-(4x^2-4x+1)=6-(2x-1)^2\leq 6$
Vậy gtln của $B$ là $6$ khi $2x-1=0\Leftrightarrow x=\frac{1}{2}$
c.
$x-y=2\Rightarrow x=y+2$. Khi đó:
$B=y^2-3x^2=y^2-3(y+2)^2=y^2-(3y^2+12y+12)=-2y^2-12y-12$
$=6-2(y^2+6y+9)=6-2(y+3)^2\leq 6$
Vậy $B_{\max}=6$
Bài 8:
Đặt $f(x)=x^3-3x^2+5x+a$
Theo định lý Bê-du, để $f(x)\vdots x-2$ thì $f(2)=0$
$\Leftrightarrow 6+a=0$
$\Leftrightarrow a=-6$
Bài 8 cách khác:
$x^3-3x^2+5x+a=x^2(x-2)-x(x-2)+3(x-2)+(a+6)$
$=(x-2)(x^2-x+3)+(a+6)$
Vậy $x^3-3x^2+5x+a$ chia $x-2$ có dư là $a+6$
Để phép chia là chia hết thì số dư phải bằng $0$
Tức là $a+6=0$
$\Rightarrow a=-6$
Bài 5: a) Tìm giá trị nhỏ nhất của biểu thức A= 5 - 8x + x2 b) Tìm giá trị lớn nhất của biểu thức 𝐵 = (2 – x)(x + 4)
\(A=5-8x+x^2=-8x+x^2+6-11\)
\(=\left(x-4\right)^2-11\)
Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy Amin = - 11 <=> x = 4
\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)
\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy Bmax = 9 <=> x = - 1
Bài 5. (1 điểm) Tìm giá trị nhỏ nhất của biểu thức 𝑃(𝑥)=𝑥2+𝑦2−4𝑥+8𝑦+2041.
\(P=\left(x^2-4x+4\right)+\left(y^2+8y+16\right)+2021\\ P=\left(x-2\right)^2+\left(y+4\right)^2+2021\ge2021\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-4\end{matrix}\right.\)
Lời giải:
$P(x)=x^2+y^2-4x+8y+2041=(x^2-4x+4)+(y^2+8y+16)+2021$
$=(x-2)^2+(y+4)^2+2021\geq 0+0+2021=2021$
Vậy $P(x)$ min = $2021$ khi $x-2=y+4=0$
$\Leftrightarrow x=2; y=-4$
Gọi a và b là hai số tự nhiên thoả: 7a + 11b = 2020. Khi biểu thức (11a + 7b) đạt giá trị
lớn nhất. Tính × .
Tìm x , biết rằng
a) 𝑥3 - 64𝑥 = 0
b) 𝑥3 - 4𝑥2 = -4𝑥
c)𝑥2 - 16 - (𝑥 - 4) = 0
d)(2𝑥 + 1)2 = (3 + 𝑥)
e)𝑥3 - 6𝑥2 + 12𝑥 - 8 = 0
f)𝑥3 - 7𝑥 - 6 = 0
a) x³ - 64x = 0
x(x² - 64) = 0
x(x - 8)(x + 8) = 0
x = 0 hoặc x - 8 = 0 hoặc x + 8 = 0
*) x - 8 = 0
x = 8
*) x + 8 = 0
x = -8
Vậy x = -8; x = 0; x = 8
b) x³ - 4x² = -4x
x³ - 4x² + 4x = 0
x(x² - 4x + 4) = 0
x(x - 2)² = 0
x = 0 hoặc (x - 2)² = 0
*) (x - 2)² = 0
x - 2 = 0
x = 2
Vậy x = 0; x = 2
c) x² - 16 - (x - 4) = 0
(x - 4)(x + 4) - (x - 4) = 0
(x - 4)(x + 4 - 1) = 0
(x - 4)(x + 3) = 0
x - 4 = 0 hoặc x + 3 = 0
*) x - 4 = 0
x = 4
*) x + 3 = 0
x = -3
Vậy x = -3; x = 4
d) (2x + 1)² = (3 + x)²
(2x + 1)² - (3 + x)² = 0
(2x + 1 - 3 - x)(2x + 1 + 3 + x) = 0
(x - 2)(3x + 4) = 0
x - 2 = 0 hoặc 3x + 4 = 0
*) x - 2 = 0
x = 2
*) 3x + 4 = 0
3x = -4
x = -4/3
Vậy x = -4/3; x = 2
e) x³ - 6x² + 12x - 8 = 0
(x - 2)³ = 0
x - 2 = 0
x = 2
f) x³ - 7x - 6 = 0
x³ + 2x² - 2x² - 4x - 3x - 6 = 0
(x³ + 2x²) - (2x² + 4x) - (3x + 6) = 0
x²(x + 2) - 2x(x + 2) - 3(x + 2) = 0
(x + 2)(x² - 2x - 3) = 0
(x + 2)(x² + x - 3x - 3) = 0
(x + 2)[(x² + x) - (3x + 3)] = 0
(x + 2)[x(x + 1) - 3(x + 1)] = 0
(x + 2)(x + 1)(x - 3) = 0
x + 2 = 0 hoặc x + 1 = 0 hoặc x - 3 = 0
*) x + 2 = 0
x = -2
*) x + 1 = 0
x = -1
*) x - 3 = 0
x = 3
Vậy x = -1; x = -1; x = 3
a,x\(^3\)-64=0
x\(^3\) =64
=>x=3
b,x\(^3\)-4x\(^2\)=-4x
x\(^3\)-4x\(^2\)+4x=0
x(x\(^2\)-4x+4)=0
x(x-2)\(^2\)=)
TH1:x=0
TH2:x-2=0
=>x=2
c,x\(^2\)-16-(x-4)=0
(x+4)(x-4)-(x-4)=0
(x-4)(x+4-1)=0
(x-4)(x+3)=0
TH1:x-4=0
=>x=4
TH2:x+3=0
=>x=-3
d,(2x+1).2=3+x
4x+2-3-x=0
3x-1=0
x=\(\dfrac{1}{3}\)
e,x\(^3\)-6x\(^2\)+12x-8=0
(x-2)\(^3\)=0
=>x-2=0
=>x=2
f,x\(^3\)-7x+6=0
x\(^3\)-x-6x+6=0
x(x\(^2\)-1)-6(x-1)=0
x(x+1)(x-1)-6(x-1)=0
(x-1)(x\(^2\)+x-6)=0
TH1:x-1=0
=>x=1
TH2:x\(^2\)+x-6=0
x\(^2\)+3x-2x-6=0
x(x+3)-2(x+3)=0
(x+3)(x-2)=0
=>x+3=0 =>x-2=0
+>x=-3 =>x=2
d,(2x+1)\(^2\)=(3+x)\(^2\)
4x\(^2\)+4x+1-9-6x-x\(^2\)=0
3x\(^2\)-2x-8=0
3x\(^2\)-6x+4x-8=0
3x(x-2)+4(x-2)=0
(3x+4)(x-2)=0
TH1:3x+4=0 TH2:x-2=0
=>x=\(\dfrac{-4}{3}\) =>x=2
Cho \(A=\sqrt{x=2}+\frac{3}{11}\)
\(B=\frac{5}{17}-3\sqrt{x-5}\)
a) Tìm giá trị nhỏ nhất của A
b) Tìm giá trịlớn nhất của B
Biến đổi về các hằng đẳng thức, tìm giá trị nhỏ nhất của các biểu thức:
a) 𝐴 = −𝑥^2+ 2𝑥 + 5
b) 𝐵 = −𝑥^2− 8𝑥 + 10
c) 𝐶 = −3𝑥^2+ 12𝑥 + 8
d) 𝐷 = −5𝑥^2+ 9𝑥 − 3
e) 𝐸 = (4 − 𝑥)(𝑥 + 6) f)
𝐹 = (2𝑥 + 5)(4 − 3𝑥)
g) 𝐺 = (2 − 3𝑥)(2𝑥 + 3)
a: Ta có: \(A=-x^2+2x+5\)
\(=-\left(x^2-2x-5\right)\)
\(=-\left(x^2-2x+1-6\right)\)
\(=-\left(x-1\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi x=1
b: Ta có: \(B=-x^2-8x+10\)
\(=-\left(x^2+8x-10\right)\)
\(=-\left(x^2+8x+16-26\right)\)
\(=-\left(x+4\right)^2+26\le26\forall x\)
Dấu '=' xảy ra khi x=-4
c: Ta có: \(C=-3x^2+12x+8\)
\(=-3\left(x^2-4x-\dfrac{8}{3}\right)\)
\(=-3\left(x^2-4x+4-\dfrac{20}{3}\right)\)
\(=-3\left(x-2\right)^2+20\le20\forall x\)
Dấu '=' xảy ra khi x=2
d: Ta có: \(D=-5x^2+9x-3\)
\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{3}{5}\right)\)
\(=-5\left(x^2-2\cdot x\cdot\dfrac{9}{10}+\dfrac{81}{100}-\dfrac{21}{100}\right)\)
\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{21}{20}\le\dfrac{21}{20}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{9}{10}\)
e: Ta có: \(E=\left(4-x\right)\left(x+6\right)\)
\(=4x+24-x^2-6x\)
\(=-x^2-2x+24\)
\(=-\left(x^2+2x-24\right)\)
\(=-\left(x^2+2x+1-25\right)\)
\(=-\left(x+1\right)^2+25\le25\forall x\)
Dấu '=' xảy ra khi x=-1
f: Ta có: \(F=\left(2x+5\right)\left(4-3x\right)\)
\(=8x-6x^2+20-15x\)
\(=-6x^2-7x+20\)
\(=-6\left(x^2+\dfrac{7}{6}x-\dfrac{10}{3}\right)\)
\(=-6\left(x^2+2\cdot x\cdot\dfrac{7}{12}+\dfrac{49}{144}-\dfrac{529}{144}\right)\)
\(=-6\left(x+\dfrac{7}{12}\right)^2+\dfrac{529}{24}\le\dfrac{529}{24}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{7}{12}\)