Cho tam giác ABC vuông tại A . Biết AB=3cm,AC=4cm.Tìm AC
cho tam giác vuông tại a,cạch ac=3cm,cạnh ab=4cm.tìm cạnh huyền bc.
Xét \(\Delta ABC\)vuông tại \(A\), ta có :
\(AB^2+AC^2=BC^2\) ( định lý \(Pi-ta-go\))
Mà \(AB=4\left(cm\right);AC=3\left(cm\right)\)
\(\Rightarrow4^2+3^2=BC^2\)
\(\Rightarrow16+9=BC^2\)
\(\Rightarrow BC^2=25\)
\(\Rightarrow BC=5\left(cm\right)\)
Vậy \(BC=5\left(cm\right)\)
~ Ủng hộ nhé
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB= 9cm, BC= 15cm. Tính BH, HC
b) Biết BH= 1cm, HC= 3cm. Tính AB, AC
c) Biết AB= 6cm, AC= 8cm. Tính AH, BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB= 3cm, BH= 2,4cm
a) Tính BC, AC, AH, HC b) Tính tỉ số lượng giác của góc B
Bài 3: Cho tam giác ABC có BC= 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Cho Tam giác ABC vuông tại A (AB < AC), đường cao AH. a) Chứng minh Tam giác HBA ~ tam giác ABC b) Chứng minh: AB^ = BH.BCTính AB, AH, biết BH = 3cm BC = 12cm c) Gọi E là trung điểm của AB, kẻ HD vuông góc với AC tại D (D thuộc AC). Đường thẳng CE cắt AH và HD lần lượt tại I, K. Chúng minh KH = KD và 3 điểm B, I, D thẳng hàng.
a: Xet ΔHBA và ΔABC có
góc BHA=góc BAC
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: ΔABC vuông tại A có AH vuông góc BC
nên BA^2=BH*BC
\(AB=\sqrt{3\cdot12}=6\left(cm\right)\)
\(AH=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)
c: Xet ΔCAE có KD//AE
nên KD/AE=CK/CE
Xét ΔCEB có KH//EB
nên KH/EB=CK/CE=KD/AE
mà AE=EB
nên KH=KD
câu 1:Cho tam giác ABC,vuông tại A,đường cáo AH(H thuộc BC).Biết AB=12CM,Ac=5cm.tính BH,CH
Câu 2:cho tam giác ABC vuông tại A,đường cáo AH(H thuộc BC).Biết AB=18cm,BH=6cm.tính đô dài các cạnh AB,AC
Câu 3:cho tam giac abc vuông tại a,biết ab-3cm,ac=4cm,
a.tinh bc
b:kẻ đường cao ah,tính bh
Câu 4:cho tam giác ABC Vuông tại A,biết ab=4cm,đường cao ah=2cm.Tính các góc và các cạnh còn lại của tam giác
Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o
Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2
Cho tam giác ABC vuông tại A biết AB =3cm AC=4cm tính AH HB
xét tam giác ABC vuông tại A đường cao AH , áp dụng đinh lí Pytago ta có
\(AB^2+AC^2=BC^2< =>BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\)
ta có: \(AH.BC=AB.AC\)(hệ thức lượng tam giác vuông)
=>
\(AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}=2,4cm\)
Cho tam giác ABC vuông tại A. Đường tròn (O) nội tiếp tam giác ABC tiếp xúc với AB, AC lần lượt tại D và E. Tính bán kính của đường tròn (O) biết AB = 3cm, AC = 4cm.
Áp dụng định lí Pitago vào tam giác vuông ABC ta có :
B C 2 = A B 2 + A C 2 = 3 2 + 4 2 = 25
Suy ra : BC = 5 (cm)
Theo tính chất hai tiếp tuyến giao nhau ta có:
AD = AE
BD = BF
CE = CF
Mà: AD = AB – BD
AE = AC – CF
Suy ra: AD + AE = AB – BD + (AC – CF)
= AB + AC – (BD + CF)
= AB + AC – (BF + CF)
= AB + AC – BC
Suy ra:
Cho tam giác ABC vuông tại A, kẻ tia phân giác góc ABC cắt AC tại D. Biết BC = 5cm, AB = 3cm
a) Tính AC và AD
b) Kẻ DE // AB (E thuộc BC). Tính DE
a, Theo định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=4cm\)
Vì BD là pg nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{4}{8}=\dfrac{1}{2}\Rightarrow DC=\dfrac{5}{2}cm;AD=\dfrac{3}{2}\)cm
b, Vì DE // AB Theo hệ quả Ta lét
\(\dfrac{DC}{AC}=\dfrac{DE}{AB}\Rightarrow DE=\dfrac{AB.DC}{AC}=\dfrac{15}{8}\)cm
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ HM ⊥ AB;HN ⊥ AC. Biết AB = 3cm; AC = 4 cm
b) Tính số đo các góc của tam giác AMN
b) Xét tam giác AHB vuông tại H, HM là đường cao có:
∠(AMN) + ∠(ANM ) = 90 0 ⇒ ∠(ANM ) = 90 0 - ∠(AMN) = 53 , 1 0