Biết rằng đường thẳng y = 2x + 2m luôn cắt đồ thị hàm số y = x 2 + 3 x + 1 tại hai điểm phân biệt A, B với mọi giá trị của tham số m. Tìm hoành độ trung điểm của AB?
A. m + 1
B. -m - 1
C. -2m - 2
D. -2m + 1
Cho đồ thị hàm số: y = (2m - 1)x + m - 2 (1). Tìm m để:
a) Đồ thị hàm số (1) cắt đường thẳng 2x - y = 3 tại một điểm trên trục hoành.
b) Tìm m đề đồ thị hàm số (1) cắt đườg thẳng y = x + 3 tại 1 điểm trên trục hoành.
a: Thay x=3/2 và y=0 vào (1), ta được:
\(3m-\dfrac{3}{2}+m-2=0\)
=>4m=7/2
hay m=7/8
Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Giả sử (d) luôn đi qua điểm cố định M(x0; y0)
Ta có: \(y_0=\left(m+5\right)x_0+2m-10\)
<=> \(mx_0+5x_0+2m-10-y_0=0\)
<=> \(m\left(x_o+2\right)+5x_0-y_0-10=0\)
Để M cố định thì: \(\hept{\begin{cases}x_0+2=0\\5x_0-y_0-10=0\end{cases}}\) <=> \(\hept{\begin{cases}x_0=-2\\y_0=-20\end{cases}}\)
Vậy...
Bài 7. Cho hàm số y = ax – 4. Xác định hệ số a của hàm số, biết đồ thị
hàm số cắt đường thẳng y = 2x - 1 tại điểm có hoành độ bằng 2.
Bài 8. Cho hàm số y = (2m - 3)x + (2m - 1) (m là tham số, m + ).
Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ là 46.
a) Đths y = ax - 4 cắt y = 2x - 1 tại điểm có hoành độ = 2
=> Thay x = 2 vào y = 2x - 1
=> y = 1
=> (1; 1) ∈ y = ax - 4
=> Thay x = 1; y = 1 vào hàm số y = ax - 4
=> a - 4 = 1 => a = 5
b) y = (2m - 3)x + (2m - 1) cắt trục tung tại điểm có tung độ = 46
=> y = (2m - 3)x + (2m - 1) cắt (0 ; 46)
=> Thay x = 0; y = 46 vào hàm số y = (2m - 3)x + (2m - 1)
=> 2m - 1 = 46
=> m = 47/2
Cho hàm số: y = 2x + 3 (1)
1. Vẽ đồ thị hàm số (1) 2. Xác định m để đường thẳng (d): y = (2m – 1)x – 5m song song với đồ thị của hàm số (1). 3. Xác định m để đồ thị hàm số (1) và đường thẳng (d) cắt nhau tại một giao điểm có hoành độ dương.2) Để (d)//(1) thì \(\left\{{}\begin{matrix}2m-1=2\\-5m\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=3\\m\ne\dfrac{-3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne-\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=\dfrac{3}{2}\)
Vậy: Khi \(m=\dfrac{3}{2}\) thì (d)//(1)
Cho hàm số y = ax-4. Tìm hệ số a biết rằng A ) đồ thị hàm số cắt đường thẳng y = 2x-1 tại điểm có hoành độ =2 B ) đồ thị hàm số cắt đường thẳng y = 3x+2 tại. Điểm có tung độ =5
a) Gọi A (2; yA) là giao điểm của đường thẳng y = ax - 4 và đường thẳng y = 2x - 1
A thuộc y = 2x - 1 nên
Thay x = 2 vào hàm số y = 2x - 1 ta được:
y = 2.2 - 1
y = 4 - 1 = 3
Vậy A(2;3)
A thuộc y = ax - 4 nên
Thay x = 2, y = 3 vào hàm số y = ax - 4 ta được:
3 = a.2 - 4
=> a.2 = 3+4
<=> 2a = 7
<=> a = 3,5
Vậy: a = 3,5
b) Gọi B(xB; 5) là giao điểm của đường thẳng y = ax - 4 với đường thẳng y = 3x + 2
B thuộc y = 3x + 2 nên
Thay y = 5 vào hàm số y = 3x + 2 ta được:
5 = 3x + 2
<=> 3x = 5-2 = 3
<=> x = 1
Vậy B(1;5)
B thuộc y = ax - 4 nên
Thay x = 1, y = 5 vào hàm số y = ax - 4 ta được:
5 = a.1 - 4
<=> a = 5 + 4 = 9
Vậy a = 9
a) Thay x = 2 vào hàm số y = 2x - 1
Ta có:
y = 2.2 - 1 = 3
Thay x = 2; y = 3 vào hàm số y = ax - 4 ta được:
a.2 - 4 = 3
⇔ 2a = 3 + 4
⇔ 2a = 7
⇔ a = 7/2
b) Thay y = 5 vào hàm số y = 3x + 2 ta được:
3x + 2 = 5
⇔ 3x = 5 - 2
⇔ 3x = 3
⇔ x = 3 : 3
⇔ x = 1
Thay x = 1; y = 5 vào hàm số y = ax - 4 ta được:
⇔ a.1 - 4 = 5
⇔ a = 5 + 4
⇔ a = 9
Biết rằng đồ thị (C) của hàm số y = 2 x + 1 x + 2 luôn cắt đường thẳng d : y = - x + m tại hai điểm phân biệt A và B. Tìm các giá trị thực của tham số m sao cho độ dài đoạn thẳng AB ngắn nhất
A. m = 1
B. m = 2 3
C. m = 4
D. m = 0
Biết rằng đồ thị (C) của hàm số y = 2 x + 1 x + 2 luôn cắt đường thẳng d:y=-x+m tại hai điểm phân biệt A và B. Tìm các giá trị thực của tham số m sao cho độ dài đoạn thẳng AB ngắn nhất
A.
B.
C.
D.
Đáp án DPhương trình hoành độ gaio điểm của đồ thị (C) và đường thẳng
Gọi . Ta tính được khi m = 0
Bài 1 : Cho 2 hàm số y= (2m-3)x+m-2 và y=(1-2m)x-m+3 có đồ thị là (d1) và (d2). Tìm m để (d2) cắt trục hoành tại điểm có hoành độ x=4.
Bài 2 : Cho đường thẳng (d) : y=(3k-5)x+k-1
a. tìm k để (d) và 2 đường thẳng y=-2x+3 ; y=x-6 đồng quy tại 1 điểm trên mặt phẳng tọa độ.
b. CM: đồ thị hàm số luôn đi qua 1 điểm cố định với mọi k. tìm điểm cố định ấy.
Cho hàm số: y = (2m - 3)x + m - 5.
a) Vẽ đồ thị với m = 6.
b) Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi.
c) Tìm m để đồ thị hàm số tạo với 2 trục tọa độ một tam giác vuông cân.
d) tìm m để đồ thị hàm số tạo với trục hoành một góc 45 độ.
e) tìm m để đồ thị hàm số cắt đường thẳng y= 3x-4 tại 1 điểm trên Oy.
f) tìm m để đồ thị hàm số cắt đường thẳng y= 3x-4 tại 1 điểm trên Ox.