Biết số nguyên tố a b c có các chữ số theo thứ tự lần lượt lập thành cấp số nhân. Giá trị a 2 + b 2 + c 2 là
A. 20
B. 21
C. 15
D. 17
cho hai số dương a và b biết rằng ba số 1; a+8; b theo thứ tự lập thành cấp số công và ba số 1; a; b theo thứ tự lập thành cấp số nhân. tính giá trị a+b?
Do 3 số lập thành 1 CSC nên: \(2\left(a+8\right)=1+b\Rightarrow b=2a+15\)
Do 3 số lập thành 1 CSN nên:
\(a^2=b.1\Leftrightarrow a^2=2a+15\)
\(\Leftrightarrow a^2-2a-15=0\Rightarrow\left[{}\begin{matrix}a=5\\b=-3< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow b=2a+15=25\)
Cho ba số a,b,c,d theo thứ tự tạo thành cấp số nhân với công bội khác 1. Biết tổng ba số hạng đầu bằng 148 9 , đồng thời theo thứ tự đó chúng lần lượt là số hạng thứ nhất, thứ tư và thứ tám của một cấp số cộng. Tính giá trị biểu thức T=a-b+c-d?
A. T= 101 27 x
B. T= 100 27 .
C. T=- 100 27
D. T= - 101 27
Cho dãy số tăng a, b, c theo thứ tự thành lập cấp số nhân, đồng thời a , b + 8 , c tạo thành cấp số cộng và a , b + 8 , c + 64 lập thành cấp số nhân. Khi đó giá trị của a − b + 2 c bằng
A. 184
B. 64
C. 92
D. 32
Cho dãy số tăng a, b, c theo thứ tự thành lập cấp số nhân, đồng thời a , b + 8, c tạo thành cấp số cộng và a , b + 8, c + 64 lập thành cấp số nhân. Khi đó giá trị của a − b + 2 c bằng
A. a − b + 2 c = 184 9 .
B. a − b + 2 c = 64.
C. a − b + 2 c = 92 9 .
D. a − b + 2 c = 32.
Đáp án B
Từ giả thiết ta có
b 2 = a c a + c = 2 ( b + 8 ) b + 8 2 = a ( c + 64 ) ⇔ b 2 = a c a + c = 2 ( b + 8 ) b + 8 2 = b 2 + 64 a ⇔ b 2 = a c c = 7 a + 8 b = 4 a − 4
⇔ 4 a - 4 2 = a 7 a + 8 c = 7 a + 8 b = 4 a - 4 ⇔ 9 a 2 - 40 a + 16 = 0 c = 7 a + 8 b = 4 a - 4 ⇔ a = 4 ; b = 12 ; c = 36 a = 4 9 ; b = - 20 9 ; c = 100 9
Do a,b,c tạo thành một dãy số tăng nên a = 4 ; b = 12 ; c = 36 .
Suy ra
a − b + 2 c = 4 − 12 + 2.36 = 64.
Cho ba số thực a, b, c khác 0. Xét các phát biểu sau
(1) Nếu a, b, c theo thứ tự đó lập thành cấp số cộng
(công sai khác 0) thì ba số 1 a , 1 b , 1 c theo thứ tự đó
cũng lập thành cấp số cộng
(2) Nếu a, b, c theo thứ tự đó lập thành cấp số nhân
thì ba số 1 a , 1 b , 1 c theo thứ tự đó cũng lập thành cấp
số nhân.
Khẳng định nào sau đây là đúng ?
A. (1) đúng, (2) sai
B. cả (1) và (2) đúng
C. cả (1) và (2) sai
D. (2) đúng, (1) sai
Tìm ba số, biết theo thứ tự đó chúng lập thành cấp số cộng và có tổng bằng 21, và nếu lần lượt cộng thêm các số 2;3;9 vào ba số đó thì được ba số lập thành một cấp số nhân.
Gọi 3 số cần tìm lần lượt là: \({u_{n - 1}},\;{u_n},\;{u_{n + 1}}\)
Theo tính chất của cấp số cộng ta có: \({u_{n - 1}} + {u_{n + 1}} = 2{u_n}\)
Mà đề bài: \({u_{n - 1}} + {u_n} + {u_{n + 1}} = 21\) suy ra \(3{u_n} = 21\;\)
\(\begin{array}{l} \Leftrightarrow {u_n} = 7\\ \Leftrightarrow \left\{ \begin{array}{l}{u_{n - 1}} = {u_n} - d = 7 - d\\{u_{n + 1}} = {u_n} + d = 7 + d\end{array} \right.\end{array}\)
Lần lượt cộng thêm các số 2, 3, 9 vào 3 số ta được: \({u_{n - 1}} + 2,\;{u_n} + 3,\;{u_{n + 1}} + 9\) hay \(9 - d,\;10,\;16 + d\)
Theo tính chất của cấp số nhân ta có:
\(\begin{array}{l}\left( {9 - d} \right)\left( {16 + d} \right) = {10^2}\\ \Leftrightarrow {d^2} + 7d - 44 = 0\\ \Leftrightarrow \left[ \begin{array}{l}d = - 11\\d = 4\end{array} \right.\end{array}\)
Vậy 3 số cần tìm là: 18; 7; -4 hoặc 3; 7; 11.
Biết x,y, x+4 theo thứ tự lập thành cấp số cộng và x+1, y+1, 2y+2 theo thứ tự lập thành cấp số nhân với x, y là số thực dương. Giá trị của x+y là:
A. 3
B. 2
C. 5
D. 4
Ba số \(\frac{2}{{b - a}},\frac{1}{b},\frac{2}{{b - c}}\) theo thứ tự lập thành cấp số cộng. Chứng minh rằng ba số \(a,b,c\) theo thứ tự lập thành cấp số nhân.
Ba số \(\frac{2}{{b - a}},\frac{1}{b},\frac{2}{{b - c}}\) theo thứ tự lập thành cấp số cộng nên ta có:
\(\begin{array}{l}\frac{2}{{b - a}} + \frac{2}{{b - c}} = 2.\frac{1}{b} \Leftrightarrow \frac{1}{{b - a}} + \frac{1}{{b - c}} = \frac{1}{b} \Leftrightarrow \frac{{\left( {b - c} \right) + \left( {b - a} \right)}}{{\left( {b - a} \right)\left( {b - c} \right)}} = \frac{1}{b}\\ \Leftrightarrow \frac{{b - c + b - {\rm{a}}}}{{{b^2} - ab - bc + ac}} = \frac{1}{b} \Leftrightarrow \frac{{2b - c - {\rm{a}}}}{{{b^2} - ab - bc + ac}} = \frac{1}{b} \Leftrightarrow b\left( {2b - c - {\rm{a}}} \right) = {b^2} - ab - bc + ac\\ \Leftrightarrow 2{b^2} - bc - {\rm{ab}} = {b^2} - ab - bc + ac \Leftrightarrow {b^2} = {\rm{a}}c\end{array}\).
Vậy ba số \(a,b,c\) theo thứ tự lập thành cấp số nhân.
Các số a,b,c (theo thứ tự đó) lập thành một cấp số nhân có tổng bằng 26. Tìm các số đó biết rằng: nếu một cấp số cộng có a là số hạng thứ nhất, b là số hạng thứ ba thì c là số hạng thứ chín
Gọi công bội của cấp số nhân là q => b=a.q; c=a.q^2
Gọi công sai của cấp số cộng là d => b=a+2d; c=a+8d
Ta có: a.q=a+2d => \(q=\dfrac{a+2d}{a}=1+2\dfrac{d}{a}\)
\(a.q^2=a+8d\Rightarrow q^2=\dfrac{a+8d}{a}=1+8\dfrac{d}{a}\)
Suy ra \(\left(1+2\dfrac{d}{a}\right)^2=1+8\dfrac{d}{a}\Rightarrow\dfrac{d}{a}=1\left(d\ne0\right)\)
=> b=a+2a=3a; c=a+8a=9a
Theo bài ra a+b+c=26 => a+3a+9a=13a=26 => a=2; b=6; c=18
Vậy ba số cần tìm là a=2; b=6; c=18