Lập phương trình tiếp tuyến với đồ thị hàm số y = f(x) thỏa mãn f 2 1 + 2 x = x - f 3 1 - x tại điểm có hoành độ x = 1
A. y = - 1 7 x - 6 7 .
B. y = - 1 7 x + 6 7 .
C. y = 1 7 x - 6 7 .
D. y = 1 7 x + 6 7 .
Cho hàm số y=f(x) có đạo hàm trên R và thỏa mãn f(1+3x)=2x-f(1-2x) với mọi \(x\in R\) . Lập phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x=1 .
Lời giải:
Từ $f(1+3x)=2x-f(1-2x)$ thay $x=0$ suy ra $f(1)=1$
$f(1+3x)=2x-f(1-2x)$
$\Rightarrow f'(1+3x)=(2x)'-f'(1-2x)$
$\Leftrightarrow 3f'(1+3x)=2+2f'(1-2x)$. Thay $x=0$ suy ra $f'(1)=2$
PTTT của $f(x)$ tại điểm $x=1$ là:
$y=f'(1)(x-1)+f(1)=2(x-1)+1=2x-1$
Lập phương trình tiếp tuyến với đồ thị hàm số y = f ( x ) thỏa mãn f 2 ( 1 + 2 x ) = x - f 3 ( 1 - x ) tại điểm có hoành độ x = 1 ?
A. y = - 1 7 x - 6 7
B. y = - 1 7 x + 6 7
C. y = 1 7 x - 6 7
D. y = 1 7 x + 6 7
Cho hàm số y=f(x) có đạo hàm liên tục trên ( 0 ; + ∞ ) thỏa mãn f ' ( x ) + f ( x ) x = 4 x 2 + 3 x và f(1)=2. Phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x = 2 là x
A. y = 16x+20.
B. y = -16x+20
C. y = -16x-20
D. y = 16x-20.
Cho hàm số y= f(x) có đạo hàm liên tục trên R, thỏa mãn 2 f ( 2 x ) + f ( 1 - 2 x ) = 12 x 3 . Tìm phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ x = 1
A.
B.
C.
D.
Phương trình tiếp tuyến với đồ thị hàm số y = f x = x 3 - 3 x 2 + 2 tại điểm có hoành độ thỏa mãn f ' ' x = 0 là:
A. y = -x + 1
B. y = -3x + 3
C. y = -x - 1
D. y = -3x - 3
Đáp án B
Ta có f ' x = 3 x 2 - 6 x ⇒ f ' ' x = 6 x - 6 = 0 ⇔ x = 1 .
Khi đó f ' 1 = - 3 ; f 1 = 0
PTTT cần tìm là y = - 3 x - 1 = - 3 x + 3
Cho hàm số y = f ( x ) xác định. Có đạo hàm trên R thỏa mãn: f - x + 2 2 + f x + 2 3 = 10 x Viết phương trình tiếp tuyến của đồ thị hàm số y = f ( x ) tại điểm có hoành độ bằng 2
A. y=2x-5
B. y=2x-3
C. y=-2x+5
D. y=-2x+3
Cho hàm số y=f(x) xác định, có đạo hàm trên R thỏa mãn f 2 ( - x ) = ( x 2 + 2 x + 4 ) f ( x + 2 ) và f ( x ) ≠ 0 , ∀ x ∈ R . Phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x=2 là
A. y=-2x+4.
B. y=2x+4.
C. y=2x.
D. y=4x+4.
Cho hàm số y=f(x) có đạo hàm liên tục trên R và thỏa mãn 2f(5-3x)+3f(x+1)=x^2+4x+5. Viết phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ bằng 2
Thay \(x=1\Rightarrow2f\left(2\right)+3f\left(2\right)=10\Rightarrow f\left(2\right)=5\)
Đạo hàm 2 vế giả thiết:
\(-6f'\left(5-3x\right)+3f'\left(x+1\right)=2x+4\)
Thay \(x=1\)
\(-6f'\left(2\right)+3f'\left(2\right)=6\Rightarrow f'\left(2\right)=-2\)
Phương trình tiếp tuyến:
\(y=-2\left(x-2\right)+5=-2x+9\)
Cho hàm số y = f(x) có đạo hàm liên tục trên R, thỏa mãn 2f(2x) + f(1 – 2x) = 12x2. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ bằng 1 là
A. y = 4x - 6
B. y = 2x - 6
C. y = 4x - 2
D. y = 2x + 2