Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 7 2019 lúc 17:44

Các số 5; 9; 13; 17..... theo thứ tự đó lập thành cấp số cộng ( u n ) nên

u 1 = 5 d = u 2 − u 1 = 4 → C T T Q u n = u 1 + n − 1 d = 5 + 4 n − 1 = 4 n + 1  

Chọn đáp án C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 4 2018 lúc 7:25

Đáp án là A

Dãy số đã cho là cấp số cộng có  u 1 = 5 ;   u 2 = 9

⇒ d = u 2 - u 1 = 4

Do đó  u n = u 1 + n - 1 . d = 4 n + 1

Vậy u n = 4 n + 1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 12 2019 lúc 7:23

Đáp án là D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 8 2018 lúc 18:15

Chọn D

Ta có: u1 = 5 nên thay n = 1 vào 4 đáp án thấy chỉ có đáp án D đúng

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 1 2017 lúc 14:27

Chọn C

Gọi ba số đó lần lượt là x,y,z

Do ba số là các số hạng thứ 2, thứ 9 và thứ 44 của một cấp số cộng nên ta có liên hệ:  y = x + 7 d ,   z = x + 42 (với d là công sai của cấp số cộng)

Theo giả thiết ta có:  x + y + z   = x + x + 7 d + x + 42 d   = 3 x + 49 d   = 217

Mặt khác do x,y,z là các số hạng liên tiếp của một cấp số nhân nên

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 12 2017 lúc 6:57

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 1 2018 lúc 2:59

Đáp án đúng : C

nguyễn quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 23:19

Theo đề, ta có: \(S_n=3003\)

=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)

=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)

=>n(n+1)=6006

=>n^2+n-6006=0

=>(n-77)(n+78)=0

=>n=77(nhận) hoặc n=-78(loại)

Vậy: n=77

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:28

a) \({u_2} = {u_1} + d\)

\({u_3} = {u_1} + 2d\)

\({u_{n - 1}} = {u_1} + \left( {n - 2} \right)d\)

\({u_n} = {u_1} + \left( {n - 1} \right)d\)

\({S_n} = {u_1} + {u_1} + 2d +  \ldots  + {u_1} + \left( {n - 2} \right)d + {u_1} + \left( {n - 1} \right)d\)

b) \({S_n} = {u_n} + {u_{n - 1}} +  \ldots  + {u_2} + {u_1} = {u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d +  \ldots  + {u_1} + d + {u_1}\)

c) \(2{S_n} = \left( {{u_1} + {u_1} + d +  \ldots  + {u_1} + \left( {n - 1} \right)d} \right) + \left( {{u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d +  \ldots  + {u_1}} \right)\).

\( \Rightarrow 2{S_n} = n.\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)

\( \Rightarrow {S_n} = \frac{n}{2}\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)