Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cường hoàng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 5 2018 lúc 4:47

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 10 2017 lúc 18:06

Giá trị nhỏ nhất của hàm số trên đoạn [-2,3] là điểm thấp nhất của đồ thị trên đoạn đó. Vậy hàm số đạt giá trị nhỏ nhất tại x = -2. Thay x = -2 vào hàm số y đã cho ta có giá trị nhỏ nhất là -2.

Giá trị lớn nhất của hàm số trên đoạn [-2,3] là điểm cao nhất của đồ thị trên đoạn đó. Vậy hàm số đạt giá trị lớn nhất tại x = 3. Thay x = 3 vào hàm số y đã cho ta có giá trị lớn nhất là 3.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 8 2017 lúc 5:15

Đáp án B

Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2021 lúc 14:11

\(y'=3x^2-6x-9=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

a. Trên [-4;4] ta có: 

\(y\left(-4\right)=-41\) ; \(y\left(-1\right)=40\) ; \(y\left(3\right)=8\) ; \(y\left(4\right)=15\)

\(\Rightarrow y_{min}=-41\) ; \(y_{max}=40\)

b. Trên [0;5] ta có:

\(y\left(0\right)=35\) ; \(y\left(3\right)=8\)\(y\left(5\right)=40\)

\(\Rightarrow y_{max}=40\) ; \(y_{min}=8\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 1 2019 lúc 3:51

TXĐ: D = (-∞; 1) ∪ (1; +∞)

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12 > 0 với ∀ x ∈ D.

⇒ hàm số đồng biến trên (-∞; 1) và (1; +∞).

⇒ Hàm số đồng biến trên [2; 4] và [-3; -2]

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 2 2017 lúc 16:09

Dựa vào bảng xét dấu của f '(x) ta có bảng biến thiên của hàm số  trên đoạn [0;5] như sau

Suy ra Và 

Ta có 

Vì f(x)  đồng biến trên đoạn [2;5] nên 

⇒ f(5)>f(0)

Vậy

Chọn đáp án D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 7 2017 lúc 11:45

Chọn B.

Phương pháp: 

Để tìm GTNN, GTLN của hàm số f trên đoạn [a;b] ta làm như sau:

- So sánh các giá trị vừa tìm được. Số lớn nhất trong các giá trị đó chính là GTLN của f trên [a;b] số nhỏ nhất trong các giá trị đó chính là GTNN của f trên [a;b] 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 12 2018 lúc 18:25

Phương pháp:

- Tính y' xét tính đồng biến, nghịch biến của hàm số.

- Tính GTNN của hàm số trên [1;2]

Cách giải:

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 6 2018 lúc 12:26