Dựa vào bảng xét dấu của f '(x) ta có bảng biến thiên của hàm số trên đoạn [0;5] như sau
Suy ra Và
Ta có
Vì f(x) đồng biến trên đoạn [2;5] nên
⇒ f(5)>f(0)
Vậy
Chọn đáp án D.
Dựa vào bảng xét dấu của f '(x) ta có bảng biến thiên của hàm số trên đoạn [0;5] như sau
Suy ra Và
Ta có
Vì f(x) đồng biến trên đoạn [2;5] nên
⇒ f(5)>f(0)
Vậy
Chọn đáp án D.
Cho hàm số f(x) có đạo hàm trên R và có đồ thị hàm y = f'(x) như hình vẽ. Biết rằng f ( 0 ) + f ( 3 ) = f ( 2 ) + f ( 5 ) . Giá trị nhỏ nhất và giá trị lớn của f(x) trên đoạn [0;5] lần lượt là:
A . f ( 2 ) ; f ( 0 )
B . f ( 0 ) ; f ( 5 )
C . f ( 2 ) ; f ( 5 )
D . f ( 1 ) ; f ( 3 )
Cho hàm số y=f(x) liên tục, không âm trên R thỏa mãn f ( x ) . f ' ( x ) = 2 x f ( x ) 2 + 1 và f(0)=0. Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y=f(x) trên đoạn [1;3] lần lượt là:
A. M=20;m=2
B. M = 4 11 ; m = 3
C. M = 20 ; m = 2
D. M = 3 11 ; m = 3
Cho hàm số f(x) có đạo hàm là f ' x . Đồ thị của hàm số y = f ' x được cho như hình vẽ bên. Biết rằng f 0 + f 3 = f 2 + f 5 . Giá trị nhỏ nhất và giá trị lớn nhất của f(x) trên đoạn 0 ; 5 lần lượt là
A. f 0 , f 5
B. f(2); f(0)
C. f(1); f(5)
D. f(2); f(5)
Cho hàm số f (x) có đạo hàm là f ' x . Đồ thị hàm số y = f ' x được cho như hình bên. Biết rằng f 0 + f 3 = f 2 + f 5 . Gía trị nhỏ nhất, giá trị lớn nhất của f (x) trên đoạn 0 ; 5 lần lượt là
A. f 2 , f 5
B. f 0 , f 5
C. f 2 , f 0
D. f 1 , f 5
Cho hàm số y = f x có đạo hàm cấp hai trên R. Biết f ' 0 = 3 ; f ' 2 = - 2018 và bảng xét dấu của f ' ' 0 như sau:
Hàm số y = f x + 2017 + 2018 x đạt giá trị nhỏ nhất tại điểm x 0 thuộc khoảng nào sau đây?
A. 0 ; 2
B. - ∞ ; - 2017
C. - 2017 ; 0
D. 2017 ; + ∞
Cho hàm số y=f(x) có đạo hàm xác định trên tập R / - 1 và đồ thị hàm số y=f(x) như hình vẽ. Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị nhỏ nhất của hàm số y=f(sin2x) trên 0 ; π 2 . Tính P=m.M
A. P=0
B. P=8
C. P=12
D. P=4
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Cho hàm số f(x) có đạo hàmf'(x) xác định và liên tục trên đoạn [0;6]. Đồ thị hàm số y=f'(x) như hình vẽ bên. Biết f(0)=f(3)=f(6)=-1,f(1)=f(5)=1. Số điểm cực trị của hàm số y = [ f ( x ) ] 2 trên đoạn [0;6] là
A. 5.
B. 7.
C. 9.
D. 8.
Cho hàm số f ( x ) = a x 4 + b x 2 + c có m i n ( - ∞ ; 0 ) f ( x ) = f ( - 1 ) . Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [ 1 2 ;2] bằng
A. c + 8a
B. c - 7 16 a
C. c + 9 16 a
D. c - a