Tìm số nghiệm của phương trình
2 x - 3 . 2 x + 2 2 + 8 = 0
A. 0
B. 1
C. 3
D. 2
Cho phương trình (2m-1)x^2 + (m-3)x - 6m-2=0.
a) Chứng minh phương trình đã cho luô có nghiệm x= -2.
b) Tìm các nghiệm của phương tình đã cho theo tham số m.
a: \(\Delta=\left(m-3\right)^2-4\left(2m-1\right)\left(-6m-2\right)\)
\(=m^2-6m+9+4\left(2m-1\right)\left(6m+2\right)\)
\(=m^2-6m+9+4\left(12m^2+4m-6m-2\right)\)
\(=m^2-6m+9+48m^2-8m-8\)
\(=49m^2-14m+1=\left(7m-1\right)^2>=0\)
Vậy: Phương trình luôn có hai nghiệm
b: Các nghiệm của phương trình là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-m+3-7m+1}{2\left(2m-1\right)}=\dfrac{-8m+4}{2\left(2m-1\right)}=-2\\x_2=\dfrac{-m+3+7m-1}{2\left(2m-1\right)}=\dfrac{6m+2}{2\left(2m-1\right)}=\dfrac{3m+1}{2m-1}\end{matrix}\right.\)
cho phương trình 2x2 +2( m+1) x +m2 +4m +3=0 , với m là tham số
a) giải phương trình khi m=-3
b)tìm giá trị của m để phương trình nhan x=1 là nghiệm với m tìm được hãy tìm nghiệm còn lại của phương trình
c)tìm giá trị của m để phương trình có hai nghiệm trái dấu
d) tìm giá trị của m để phương trình có hai nghiệm x1 ,x2
e) tìm m để pt có hai nghiệm x1 ,x2 sao cho biểu thức sau đạt già trị lớn nhất A=/x1x2 -2(x1 +x2 )/
bài 4 cho phương trình \(x^3-x^2-9x-9m=0\) trong đó m là một số cho trước .
a,xác định n để phương trình có một nghiệm x=3
b,với giá trị của m vừa tìm được,tìm các nghiệm còn lại của phương trình
bài 5 cho phương trình (ẩn x):\(x^3-\left(m^2-m+7\right)x-3\left(m^2-m-2\right)=0\)
a,xác định a để phương trình có một nghiệm x=-2
b,với giá trị của a vừa tìm được,tìm các nghiệm còn lại của phương trình
`B4:`
`a)` Thay `x=3` vào ptr:
`3^3-3^2-9.3-9m=0<=>m=-1`
`b)` Thay `m=-1` vào ptr có: `x^3-x^2-9x+9=0`
`<=>x^2(x-1)-9(x-1)=0`
`<=>(x-1)(x-3)(x+3)=0<=>[(x=1),(x=+-3):}`
`B5:`
`a)` Thay `x=-2` vào có: `(-2)^3-(m^2-m+7).(-2)-3(m^2-m-2)=0`
`<=>-8+2m^2-2m+14-3m^2+3m+6=0`
`<=>-m^2+m+12=0<=>(m-4)(m+3)=0<=>[(m=4),(m=-3):}`
`b)`
`@` Với `m=4` có: `x^3-(4^2-4+7)x-3(4^2-4-2)=0`
`<=>x^3-19x-30=0`
`<=>x^3-5x^2+5x^2-25x+6x-30=0`
`<=>(x-5)(x^2+5x+6)=0`
`<=>(x-5)(x+2)(x+3)=0<=>[(x=5),(x=-2),(x=-3):}`
`@` Với `m=-3` có: `x^3-[(-3)^2-(-3)+7]x-3[(-3)^2-(-3)-2]=0`
`<=>x^3-19x-30=0<=>[(x=5),(x=-2),(x=-3):}`
cho phương trình: x^2-2(m-1)x-3-m=0
a. chứng tỏ rằng phương trình có nghiệm x1,x2 với mọim
b. tìm m để phương trình có hai nghiệm trái dấu
c. tìm m để phương trình có hai nghiệm cùng dấu
d. tìm m sao cho nghiệm số x1,x2 của phương trình thỏa mãn x1^2+x2^2=10
Bài 1: Cho phương trình mx^2 -3(m + 1)x + m^2 - 13m - 4 = 0 (m là tham số). Tìm các giá trị của m để phương trình có một nghiệm là x = -2. Tìm nghiệm còn lại.
Ta có pt: \(mx^2-3\left(m+1\right)x+m^2-13m-4=0\)
Do pt có nghiệm là x = -2 nên thay vào pt ta có:
\(m\cdot\left(-2\right)^2-3\left(m+1\right)\cdot-2+m^2-13m-4=0\)
\(\Leftrightarrow4m+6\left(m+1\right)+m^2-13m-4=0\)
\(\Leftrightarrow6m+6+m^2-9m-4=0\)
\(\Leftrightarrow m^2-3m+2=0\)
\(\Delta=\left(-3\right)^2-4\cdot1\cdot2=1>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{3+\sqrt{1}}{2}=2\\m_2=\dfrac{3-\sqrt{1}}{2}=1\end{matrix}\right.\)
Nếu m = 1 thì pt là:
\(x^2-3\left(1+1\right)x+1^2-13\cdot1-4=0\)
\(\Leftrightarrow x^2-6x-16=0\)
Theo vi-et: \(x_1+x_2=-\dfrac{-6}{1}\Rightarrow x_2=6-x_2=8\)
Nếu m = 2 thì pt là:
\(2x^2-3\cdot\left(2+1\right)x+2^2-13\cdot2-4=0\)
\(\Leftrightarrow2x^2-9x-26=0\)
Theo vi-et: \(x_1+x_2=-\dfrac{-9}{2}\Leftrightarrow x_2=\dfrac{9}{2}+2=\dfrac{13}{2}\)
Cho phương trình x^2+(m-2)x-m=13
(m là tham số).
Tìm m để phương trình có nghiệm x = 3. Khi đó, tìm nghiệm còn lại?
Thay x=3 vào pt, ta được:
9-3(m-2)-m=13
=>9-m-3m+6=13
=>-4m+15=13
=>-4m=-2
=>m=1/2
Cho phương trình: x^3 - x^2 - 9x - 9m= 0 , trong đó m là một số cho trước. Biết x = 3 là một nghiệm của phương trình. Tìm tất cả các nghiệm của phương trình.
x = 3 là nghiệm của phương trình, ta có:
3^3 - 3^2 - 9.3 - 9m = 0
<=> 27 - 9 - 27 - 9m = 0
<=> -9 - 9m = 0
<=> -9m = 0 + 9
<=> -9m = 9
<=> m = -1
Tìm số nghiệm của phương trình log2(x)-log4(x-3)=2
ĐKXĐ: \(x>3\)
\(\log_2x-\dfrac{1}{2}log_2\left(x-3\right)=2\)
\(\Leftrightarrow2\log_2x-log_2\left(x-3\right)=4\)
\(\Leftrightarrow\log_2\dfrac{x^2}{x-3}=4\)
\(\Leftrightarrow\dfrac{x^2}{x-3}=16\)
\(\Leftrightarrow x^2-16x+48=0\Rightarrow\left[{}\begin{matrix}x=12\\x=4\end{matrix}\right.\)
Cho phương trình 2x2 + 2(m+1)x +m2+4m + 3 =0
1/Tìm giá trị của m để phương trình nhận x=1 làm nghiệm.Với m vừa tìm đc ,hãy tìm nghiệm còn lại của phương trình
2/Tìm các giá trị của m để phương trình có hai nghiệm trái dấu
3/tìm các giá trị của m để phương trình có hai nghiệm x1, x2
4/ tìm m để phương trình có hai nghiệm x1,x2 sao cho biểu thức A=|x1x2 - 2(x1x2 ) đạt giá trịn lớn nhất
Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt
Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4
Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)
Câu 4: Cho tam giác ABC. Gọi D,I lần lượt là các điểm xác định bởi \(3\overrightarrow{BD}-\overrightarrow{BC}=\overrightarrow{0}\) và \(\overrightarrow{IA}+\overrightarrow{ID}=\overrightarrow{0}\). Gọi M là điểm thỏa mãn \(\overrightarrow{AM}=x\overrightarrow{AC}\) (x∈R)
a) Biểu thị \(\overrightarrow{BI}\) theo \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\)
b) Tìm x để ba điểm B,I,M thẳng hàng
1.
Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)
Pt trở thành:
\(4t=t^2-5+2m-1\)
\(\Leftrightarrow t^2-4t+2m-6=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)
2.
Để pt đã cho có 2 nghiệm:
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)
Khi đó:
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)
\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)
3.
Nối AI kéo dài cắt BC tại D thì D là chân đường vuông góc của đỉnh A trên BC
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{c}{b}\)
\(\Rightarrow\overrightarrow{BD}=\dfrac{c}{b}\overrightarrow{DC}\)
\(\Leftrightarrow\overrightarrow{ID}-\overrightarrow{IB}=\dfrac{c}{b}\left(\overrightarrow{IC}-\overrightarrow{ID}\right)\)
\(\Leftrightarrow b.\overrightarrow{IB}+\overrightarrow{c}.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}\) (1)
Mặt khác:
\(\dfrac{ID}{IA}=\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{a}{b+c}\)
\(\Leftrightarrow\left(b+c\right)\overrightarrow{ID}=-a.\overrightarrow{IA}\) (2)
(1); (2) \(\Rightarrow a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}-\left(b+c\right)\overrightarrow{ID}=\overrightarrow{0}\)