Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Võ Văn Kiệt

Bài 1: Cho phương trình mx^2 -3(m + 1)x + m^2 - 13m - 4 = 0 (m là tham số). Tìm các giá trị của m để phương trình có một nghiệm là x = -2. Tìm nghiệm còn lại.

HT.Phong (9A5)
16 tháng 1 2024 lúc 18:23

Ta có pt: \(mx^2-3\left(m+1\right)x+m^2-13m-4=0\)

Do pt có nghiệm là x = -2 nên thay vào pt ta có: 

\(m\cdot\left(-2\right)^2-3\left(m+1\right)\cdot-2+m^2-13m-4=0\)

\(\Leftrightarrow4m+6\left(m+1\right)+m^2-13m-4=0\)

\(\Leftrightarrow6m+6+m^2-9m-4=0\)

\(\Leftrightarrow m^2-3m+2=0\)

\(\Delta=\left(-3\right)^2-4\cdot1\cdot2=1>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{3+\sqrt{1}}{2}=2\\m_2=\dfrac{3-\sqrt{1}}{2}=1\end{matrix}\right.\)

Nếu m = 1 thì pt là: 

\(x^2-3\left(1+1\right)x+1^2-13\cdot1-4=0\)

\(\Leftrightarrow x^2-6x-16=0\)

Theo vi-et: \(x_1+x_2=-\dfrac{-6}{1}\Rightarrow x_2=6-x_2=8\) 

Nếu m = 2 thì pt là:

\(2x^2-3\cdot\left(2+1\right)x+2^2-13\cdot2-4=0\)

\(\Leftrightarrow2x^2-9x-26=0\)  

Theo vi-et: \(x_1+x_2=-\dfrac{-9}{2}\Leftrightarrow x_2=\dfrac{9}{2}+2=\dfrac{13}{2}\)


Các câu hỏi tương tự
Kido Mini
Xem chi tiết
Lê Ngọc Huyền
Xem chi tiết
Ngọc Phương Phạm Thị
Xem chi tiết
Phan Trần Hạ Vy
Xem chi tiết
nguyễn vũ ngọc lan
Xem chi tiết
ngocha_pham
Xem chi tiết
Dung Ho
Xem chi tiết
KYAN Gaming
Xem chi tiết
Lê Hoàng Anh
Xem chi tiết