Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 11 2018 lúc 13:25

Đáp án A

Mặt phẳng song song với (Oyz)  dạng x+d = 0 (d  0).

Mặt phẳng đi qua A nên d = -2 => mặt phẳng cần tìm  x-2=0 hay x=2.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 7 2019 lúc 18:26

Đáp án C

Phương trình mặt phẳng (Q) viết lại dưới dạng: 3x - 6y + 2z - 6 = 0

 

Suy ra đáp án B sai. Trong ba đáp án còn lại chỉ có mặt phẳng ở đáp án C đi qua điểm A.

Thái Thùy Linh
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 1 2021 lúc 15:34

a.

Chọn \(C\left(1;1;1\right)\) là 1 điểm thuộc denta

\(\Rightarrow\overrightarrow{AC}=\left(0;-1;4\right)\)

Đường thẳng denta có \(\overrightarrow{u_{\Delta}}=\left(2;-1;1\right)\) là 1 vtcp

\(\Rightarrow\left[\overrightarrow{AC};\overrightarrow{u_{\Delta}}\right]=\left(3;8;2\right)\)

\(\Rightarrow\left(Q\right)\) nhận \(\left(3;8;2\right)\) là 1 vtpt

Phương trình (Q):

\(3\left(x-1\right)+8\left(y-2\right)+2\left(y+3\right)=0\)

b.

Mặt phẳng (P) nhận \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) là 1 vtpt

Ta có: \(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_{\left(P\right)}}\right]=\left(-2;-1;3\right)\)

Mặt phẳng (Q) nhận (2;1;-3) là 1 vtpt

Phương trình (Q):

\(2\left(x-1\right)+1\left(y-2\right)-3\left(z+3\right)=0\)

Nguyễn Việt Lâm
28 tháng 1 2021 lúc 15:54

c.

Gọi M là giao điểm denta và (P) thì tọa độ M thỏa:

\(-1+2t+2-t+t-3=0\Rightarrow t=1\)

\(\Rightarrow M\left(1;1;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_{\Delta}}\right]=\left(2;1;-3\right)\)

Đường thẳng d nhận (2;1;-3) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+2t\\y=1+t\\z=1-3t\end{matrix}\right.\)

d.

Do M thuộc denta nên tọa độ có dạng: \(M\left(-1+2t;2-t;t\right)\)

M là trung điểm AN \(\Rightarrow N\left(-3+4t;2-2t;2t+3\right)\)

N thuộc (P) nên: \(-3+4t+2-2t+2t+3-3=0\Rightarrow t=\dfrac{1}{4}\)

\(\Rightarrow\overrightarrow{MN}=\left(-2+2t;-t;t+3\right)=\left(-\dfrac{3}{2};-\dfrac{1}{4};\dfrac{13}{4}\right)=-\dfrac{1}{4}\left(6;1;13\right)\)

Phương trình d: \(\left\{{}\begin{matrix}x=1+6t\\y=2+t\\z=-3+13t\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2018 lúc 7:20

Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 2 2019 lúc 11:32

Phương trình mặt phẳng đi qua M(2; 6; -3) và song song với (Oxy): z + 3 = 0

Phương trình mặt phẳng đi qua M(2; 6; -3) và song song với (Oyz): x – 2 = 0

Phương trình mặt phẳng đi qua M(2; 6; -3) và song song với (Ozx): y – 6 = 0.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 2 2019 lúc 12:55

Đáp án A

Vì mặt phẳng (P) song song với mặt phẳng (Q): 2x – y + 2z = 0 nên mặt phẳng (P) có dạng: 2x – y + 2z + d = 0

Mà mặt phẳng (P) đi qua điểm A(2; -1; -2) nên:

2.2 –(-1) + 2.(-2) + d = 0 nên d = -1

Vậy phương trình mặt phẳng (P) là: 2x – y + 2z – 1= 0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 1 2018 lúc 5:02

Đáp án B

Mặt khác (P) đi qua điểm A(2 ;1 ;-3) nên ta có phương trình của mặt phẳng (P) là: 1(x - 2) - 1(y - 1) = 0 <=> x - y - 1 = 0.

Vậy đáp án đúng là B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 5 2019 lúc 18:14

Đường thẳng Δ song song với d ⇒ Δ: x + y + c = 0, (c ≠ 0)

Vì Δ đi qua A ⇒ 3 + 0 + c = 0 ⇒ c = -3(tm)

Vậy đường thẳng Δ có dạng: x+y-3=0

Vì đường tròn có tâm I thuộc d nên I(a;-a)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vì đường tròn đi qua A, B nên I A 2  = I B 2  ⇒ (3 - a ) 2  + a 2  = a 2  + (2 + a ) 2  ⇔ (3 - a ) 2  = (2 + a ) 2

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vậy phương trình đường tròn có dạng:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Ta có: 

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Giả sử elip (E) có dạng:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vì (E) đi qua B nên:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vậy phương trình chính tắc của elip (E) là:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 8 2019 lúc 12:08

Mặt phẳng ( α ) đi qua hai điểm A, B và vuông góc với mặt phẳng ( β ): x + 2y – z = 0.

Vậy hai vecto có giá song song hoặc nằm trên ( α ) là  AB →  = (2; 2; 1) và  n β →  = (1; 2; −1).

Suy ra ( α ) có vecto pháp tuyến là:  n α →  = (−4; 3; 2)

Vậy phương trình của ( α ) là: -4x + 3(y – 1) + 2z = 0 hay 4x – 3y – 2z + 3 = 0

Sugar Coffee
Xem chi tiết
Hồ Nhật Phi
30 tháng 1 2022 lúc 20:40

Gọi I(a;b;c) và r lần lượt là tâm và bán kính mặt cầu (S).

Phương trình mặt cầu (S) có dạng: (x-a)2+(y-b)2+(z-c)2=r2.

a) (S) đi qua các điểm C(2;-4;3), (2;0;0), (0;-4;0) và (0;0;3).

Ta có hệ phương trình:

\(\left\{{}\begin{matrix}\left(2-a\right)^2+\left(-4-b\right)^2+\left(3-c\right)^2=r^2\\\left(2-a\right)^2+b^2+c^2=r^2\\a^2+\left(-4-b\right)^2+c^2=r^2\\a^2+b^2+\left(3-c\right)^2=r^2\end{matrix}\right.\) \(\Rightarrow\) a=1, b=-2, c=3/2, r2=29/4.

Phương trình cần tìm là: (S): (x-1)2+(y+2)2+(z-3/2)2=29/4.

b) (S) đi qua các điểm C(2;-4;3), (2;-4;0), (2;0;3) và (0;-4;3).

Ta có hệ phương trình:

\(\left\{{}\begin{matrix}\left(2-a\right)^2+\left(-4-b\right)^2+\left(3-c\right)^2=r^2\\\left(2-a\right)^2+\left(-4-b\right)^2+c^2=r^2\\a^2+\left(-4-b\right)^2+\left(3-c\right)^2=r^2\\\left(2-a\right)^2+b^2+\left(3-c\right)^2=r^2\end{matrix}\right.\) \(\Rightarrow\) a=1, b=-2, c=3/2, r2=29/4.

Phương trình cần tìm là: (S): (x-1)2+(y+2)2+(z-3/2)2=29/4.