Bài 3: Phương trình đường thẳng trong không gian

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thái Thùy Linh

Cho A(1,2,-3), B(3,0,1) , denta :\(\left\{{}\begin{matrix}x=-1+2t\\y=2-t\\z=t\end{matrix}\right.\)

(P): x+y+z-3=0

a) Lập phương trình mặt phẳng (Q) đi qua điểm A và chứa đường thẳng denta

b) Lập phương trình mặt phẳng (Q) đi qua điểm A và song song với đường thẳng denta và vuông góc với mặt phẳng (P)

c) Lập phương trình đường thẳng d nằm trên mặt phẳng (P) cắt và vuông góc với denta

d) Lập phương trình đường thẳng d đi qua điểm A cắt denta tại M, cắt mặt phẳng (P) tại N sao cho M là trung điểm AN

Nguyễn Việt Lâm
28 tháng 1 2021 lúc 15:34

a.

Chọn \(C\left(1;1;1\right)\) là 1 điểm thuộc denta

\(\Rightarrow\overrightarrow{AC}=\left(0;-1;4\right)\)

Đường thẳng denta có \(\overrightarrow{u_{\Delta}}=\left(2;-1;1\right)\) là 1 vtcp

\(\Rightarrow\left[\overrightarrow{AC};\overrightarrow{u_{\Delta}}\right]=\left(3;8;2\right)\)

\(\Rightarrow\left(Q\right)\) nhận \(\left(3;8;2\right)\) là 1 vtpt

Phương trình (Q):

\(3\left(x-1\right)+8\left(y-2\right)+2\left(y+3\right)=0\)

b.

Mặt phẳng (P) nhận \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) là 1 vtpt

Ta có: \(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_{\left(P\right)}}\right]=\left(-2;-1;3\right)\)

Mặt phẳng (Q) nhận (2;1;-3) là 1 vtpt

Phương trình (Q):

\(2\left(x-1\right)+1\left(y-2\right)-3\left(z+3\right)=0\)

Nguyễn Việt Lâm
28 tháng 1 2021 lúc 15:54

c.

Gọi M là giao điểm denta và (P) thì tọa độ M thỏa:

\(-1+2t+2-t+t-3=0\Rightarrow t=1\)

\(\Rightarrow M\left(1;1;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_{\Delta}}\right]=\left(2;1;-3\right)\)

Đường thẳng d nhận (2;1;-3) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+2t\\y=1+t\\z=1-3t\end{matrix}\right.\)

d.

Do M thuộc denta nên tọa độ có dạng: \(M\left(-1+2t;2-t;t\right)\)

M là trung điểm AN \(\Rightarrow N\left(-3+4t;2-2t;2t+3\right)\)

N thuộc (P) nên: \(-3+4t+2-2t+2t+3-3=0\Rightarrow t=\dfrac{1}{4}\)

\(\Rightarrow\overrightarrow{MN}=\left(-2+2t;-t;t+3\right)=\left(-\dfrac{3}{2};-\dfrac{1}{4};\dfrac{13}{4}\right)=-\dfrac{1}{4}\left(6;1;13\right)\)

Phương trình d: \(\left\{{}\begin{matrix}x=1+6t\\y=2+t\\z=-3+13t\end{matrix}\right.\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
An Sơ Hạ
Xem chi tiết
Sonyeondan Bangtan
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thanh Tâm TK
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết