Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Hà Quang Minh
8 tháng 9 2023 lúc 22:04

a) Xét tứ giác \(ABDC\) có:
\(M\) là trung điểm của \(BC\) (gt)
\(M\) là trung điểm của \(AD\) (do \(D\) đối xứng với \(A\) qua \(BC\))
Suy ra \(ABDC\) là hình bình hành
b) Do \(\Delta ABC\) cân tại \(A\), có \(AM\) là trung tuyến (gt)
Suy ra \(AM\) là đường cao, trung trực, phân giác
Suy ra \(AM\) vuông góc \(BM\) và \(CM\)
Xét tứ giác \(OAMB\) ta có:
\(E\) là trung điểm của \(OM\) và \(AB\) (gt)
Suy ra \(OAMB\) là hình bình hành
Suy ra \(OB\) // \(AM\); \(OA\) // \(MB\); \(OA = BM\); \(OB = AM\)
Mà \(AM \bot BM\) (cmt)
Suy ra: \(AM \bot OA\); \(OB \bot MB\)
Mà \(AM\) // \(OB\) (cmt)
Suy ra \(OB \bot OA\)
Xét \(\Delta AOB\) và \(\Delta MBO\) (các tam giác vuông) ta có:
\(\widehat {{\rm{AOB}}} = \widehat {{\rm{OBM}}} = 90^\circ \)
\(AO = MB\) (cmt)
\(OB = AM\) (cmt)
Suy ra \(\Delta AOB = \Delta MBO\) (c-g-c)
Suy ra \(OM = AB\)
c) \(OM = AB\) (cmt)
Mà \(EM = EO = \frac{1}{2}OM\); \(EA = EB = \frac{1}{2}AB\)
Suy ra \(EO = EA = EM = EB\) (1)
Xét \(\Delta ABC\) cân ta có: \(\widehat {{\rm{ABC}}} = \widehat {{\rm{ACB}}}\) và \(AB = AC\)
Mà \(EA = EB = \frac{1}{2}AB\); \(FA = FC = \frac{1}{2}AC\) (gt)
Suy ra \(AE = EB = FA = FM\) (2)
Xét \(\Delta BEM\) và \(\Delta CMF\) ta có:
\(BE = CF\) (cmt)
\(\widehat {{\rm{ABC}}} = \widehat {{\rm{ACB}}}\) (cmt)
\(BM = CM\) (gt)
Suy ra \(\Delta BEM = \Delta CFM\) (c-g-c)
Suy ra \(EM = FM\) (3)
Từ (1), (2), (3) suy ra \(AE = AF = FM = ME\)
Suy ra \(AEMF\) là hình thoi

Súng
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 10 2021 lúc 12:55

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

Phạm Ngọc Gia Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 9 2021 lúc 21:33

Xét ΔABC có 

F là trung điểm của BC

E là trung điểm của AC

Do đó: FE là đường trung bình của ΔABC

Suy ra: FE//AB và \(FE=\dfrac{AB}{2}\)

hay FE//AD và FE=AD
Ta có: \(AD=\dfrac{AB}{2}\)

\(AE=\dfrac{AC}{2}\)

mà AB=AC

nên AD=AE

Xét tứ giác ADFE có 

FE//AD

FE=AD

Do đó: ADFE là hình bình hành

mà AD=AE

nên ADFE là hình thoi

Lê Thị Hà Anh
Xem chi tiết
Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 23:15

a: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó:AEHF là hình chữ nhật

Nguyễn Thuỳ Linh
Xem chi tiết
Lê Tài Bảo Châu
2 tháng 3 2020 lúc 17:17

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

Khách vãng lai đã xóa
Lê Tài Bảo Châu
2 tháng 3 2020 lúc 17:18

Tối về mình làm nốt  nhé giờ mình có việc 

Khách vãng lai đã xóa
Trí Tiên亗
2 tháng 3 2020 lúc 19:07

Bài 4 :

A B C D

Để tứ giác ABCD là hình bình hành

\(\Leftrightarrow\hept{\begin{cases}\widehat{DAB}=\widehat{DCB}=120^o\\\widehat{ADC}=\widehat{ABC}\end{cases}}\)

Lại có : \(\widehat{DAB}+\widehat{DCB}+\widehat{ABC}+\widehat{ADC}=360^o\)

\(\Leftrightarrow\widehat{ABC}+\widehat{ADC}=120^o\)

\(\Leftrightarrow\widehat{ABC}=\widehat{ADC}=60^o\)

Khách vãng lai đã xóa
[Shima nightcore]
Xem chi tiết
Khánh Đỗ
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2021 lúc 19:53

a: Xét tứ giác ADHE có 

HD//AE

HD=AE

Do đó: ADHE là hình bình hành

mà AD=AE

nên ADHE là hình thoi

Hương
Xem chi tiết