Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rhider
Xem chi tiết
vu duy anh quân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 7 2019 lúc 8:30

S = 2 ln a - ln b - ln c = ln a 2 b c = ln 1 = 0

do a 2 = b c    

Chọn đáp án A.

KKC
Xem chi tiết
Khả Nhi
Xem chi tiết
Hà Nguyễn Anh Quân
6 tháng 4 2020 lúc 15:05

Điền số thích hợp vào ô trống : 10/12 < 17/ ? < 10/11

Khách vãng lai đã xóa
tth_new
7 tháng 4 2020 lúc 16:41

Dùng cái này:

Do: $1/2\, \left( 2\,a+3 \right)  \left( a-3 \right) ^{2} \geqq 0$ với mọi a > 0.

Nên: ${a}^{3}\geqq 9/2\,{a}^{2}-27/2 $ (*)

Áp dụng BĐT (*)...

Khách vãng lai đã xóa
Aug.21
8 tháng 4 2020 lúc 12:32

Ta có :

(2a+3)(a-3)2 \(\ge\) 0 <=> (2a+3)(a2 -6a+9) \(\ge\) 0

<=> 2a3 - 12a2 +18a +3a3 -18a+7 <=> 2a3 - 9a2 + 27 \(\ge\) 0

Dấu " = " xảy ra <=> x=3

Tương tự ta có : 2b3 -9b2 +27 \(\ge\) 0; 2c3-9c2+27\(\ge\) 0

Mà a2 +b2 + c=27 (gt)

Do đó : 2(a3+b3+c3)-9(a2+b2+c2)+27.3 \(\ge\) 0

<=> 2( a3 + b3 +c3)\(\ge\) 6.27 <=> a3+b3+c3 \(\ge\) 81

Dấu "=" xảy ra <=> a=b=c=3

Vậy GTNN của S= a3+b3+c3 là 81

Khách vãng lai đã xóa
HT.Phong (9A5)
Xem chi tiết
Nguyễn Đức Trí
15 tháng 9 2023 lúc 12:04

1) \(\left\{{}\begin{matrix}a^3+b^3+c^3=3abc\\a+b+c\ne0\end{matrix}\right.\)  \(\left(a;b;c\in R\right)\)

Ta có :

\(a^3+b^3+c^3\ge3abc\) (Bất đẳng thức Cauchy)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\left(a^3+b^3+c^3=3abc\right)\)

Thay \(a=b=c\) vào \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\) ta được

\(\Leftrightarrow P=\dfrac{6a^2}{6a^2}=1\)

Nguyễn Đức Trí
15 tháng 9 2023 lúc 12:20

\(3^x=y^2+2y\left(x;y>0\right)\)

\(\Leftrightarrow3^x+1=y^2+2y+1\)

\(\Leftrightarrow3^x+1=\left(y+1\right)^2\left(1\right)\)

- Với \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(pt\left(1\right)\Leftrightarrow3^0+1=\left(0+1\right)^2\Leftrightarrow2=1\left(vô.lý\right)\)

- Với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)  

\(pt\left(1\right)\Leftrightarrow3^1+1=\left(1+1\right)^2=4\left(luôn.luôn.đúng\right)\)

- Với \(x>1;y>1\)

\(\left(y+1\right)^2\) là 1 số chính phương

\(3^x+1=\overline{.....1}+1=\overline{.....2}\) không phải là số chính phương

\(\Rightarrow\left(1\right)\) không thỏa với \(x>1;y>1\)

Vậy với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) thỏa mãn đề bài

Trần Mai Anh
Xem chi tiết
Hải Đăng
Xem chi tiết
Thu Thao
14 tháng 4 2021 lúc 22:33

undefined

Vô Danh Tiểu Tốt
Xem chi tiết