tìm số nguyên n để 2n+1 chia hết cho n-3 nhanh nhé
Tìm số nguyên n để:
a/ n+5 chia hết cho n-1
b/ 2n - 4 chia hết cho n + 2
c/ 6n + 4 chia hết cho 2n + 1
d/ 3 - 2n chia hết cho n + 1
GIÚP MK NHANH NHÉ MN :*
\(a,n+5⋮n-1\)
mà \(n-1⋮n-1\)
\(\Leftrightarrow6⋮n-1\)
\(n-1\in U\left(6\right)\)
\(\Leftrightarrow\orbr{\begin{cases}n-1=1\\n-1=2\end{cases}}\Rightarrow\orbr{\begin{cases}n=2\\n=3\end{cases}}\)
\(\orbr{\begin{cases}n-1=3\\n-1=6\end{cases}}\Rightarrow\orbr{\begin{cases}n=4\\n=7\end{cases}}\)
vậy...........
tìm số nguyên n để 2n chia hết cho n+3 b, n chia hết cho n-1 c n-1, chia hết 2n+1
Bài 1:Cho A=(n-1)(2n-3)-2n(n-3)-4n. Chứng minh A chia hết cho 3 với mọi số nguyên n.
Bài 2: Tìm số nguyên n để B= (n+2)(2n-3)+n(2n-3)+n(n+10) chia hết cho n+3.
Bài 1:
$A=(n-1)(2n-3)-2n(n-3)-4n$
$=2n^2-5n+3-(2n^2-6n)-4n$
$=-3n+3=3(1-n)$ chia hết cho $3$ với mọi số nguyên $n$
Ta có đpcm.
Bài 2:
$B=(n+2)(2n-3)+n(2n-3)+n(n+10)$
$=(2n-3)(n+2+n)+n(n+10)$
$=(2n-3)(2n+2)+n(n+10)=4n^2-2n-6+n^2+10n$
$=5n^2+8n-6=5n(n+3)-7(n+3)+15$
$=(n+3)(5n-7)+15$
Để $B\vdots n+3$ thì $(n+3)(5n-7)+15\vdots n+3$
$\Leftrightarrow 15\vdots n+3$
$\Leftrightarrow n+3\in\left\{\pm 1;\pm 3;\pm 5;\pm 15\right\}$
$\Rightarrow n\in\left\{-2;-4;0;-6;-8; 2;12;-18\right\}$
Xin chào các bạn!
Mình là thành viên mới của olm.vn và mình rất thắc mắc về một số câu hỏi, các bạn giải giúp mình nhé:
1. Tìm năm chữ số đầu tiên (từ bên trái) của số 2008^2008
2. a) Tìm n thuộc N để n^5+1 chia hết cho n^3+1
b) Tìm n thuộc Z để n^5+1 chia hết cho n^3+1
3. Tìm số nguyên n sao cho:
a) n^2+2n-4 chia hết cho 11
b) 2n^3+n^2+7n+1chia hết cho 2n-1
c) n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
d) n^3-n^2+2n+7 chia hết cho n^2+1
Tìm số nguyên n để:
a,n+5 chia hết cho n-1
n+5 chia hết cho n+2
b,2n-4 chia hết cho n+2
c,6n+4 chia hết cho 2n+1
d,3-2n chia hết cho n+1
Bạn nào giải được thì giúp em với nhé,em cảm ơn trước vậy!
a) n+5 chia hết cho n-1
Ta có: n+5 = (n-1)+6
=> n-1 và 6 cùng chia hết cho n-1 hay n-1\(\in\)Ư(6)={-1;1;-2;2;-3;3;-6;6}
=> n\(\in\){0;2;-1;3;-2;4;-5;7}
b) n+5 chia hết cho n+2
Ta có: n+5 = (n+2)+3
=> n+2 và 3 cùng chia hết cho n+2 hay n+2\(\in\)Ư(3)={-1;1;-3;3;}
=> n\(\in\){-3;-1;-5;1;}
c) 2n-4 chia hết cho n+2
Ta có: 2n-4 = 2(n+2)-8
=> 2(n+2) và 8 cùng chia hết cho n+2 hay n+2\(\in\)Ư(8)={-1;1;-2;2;-4;4;-8;8}
=> n\(\in\){-3;-1;-4;0;-6;2;-10;6}
d) 6n+4 chia hết cho 2n+1
Ta có: 6n+4 = 3(2n+1)+1
=> 3(2n+1) và 1 cùng chia hết cho 2n+1 hay 2n+1\(\in\)Ư(1)={-1;1;}
=> n\(\in\){-1;0}
e) 3-2n chia hết cho n+1
Ta có: 3-2n= -2(1+n)+5
=> -2(1+n) và 5 cùng chia hết cho n+1 hay n+1\(\in\)Ư(5)={-1;1;-5;5;}
=> n\(\in\){-2;0;-6;4;}
Tìm số nguyên n,để : a) n + 4 chia hết cho n - 2
b) 2n + 3 chia hết cho n - 1
Ai nhanh mình tick cho , mk cảm ơn
a) Nếu n + 4 chia hết cho n - 2 => n phải chia hết cho 4 hoặc -4
Xin lỗi, phần b mình chưa giải dc.
n+4=(n-2)+6 chia hết cho n-2 (vì n+4 chia hết cho n-2)
Mà n-2 chia hết cho n-2
=> 6 chia hết cho n-2
n-2 thuộc ước nguyên của 6
Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n-2={-1;1;-2;2;-3;3;-6;6}
=>n={1;3;0;4;-1;5;-4;8}
Vậy n thuộc {1;3;0;4;-1;5;-4;8} thì n+4 chia hết cho n-2
b)2n+3=(n-1)+(n+4) chia hết cho n-1 ( vì 2n+3 chia hết cho n-1)
Mà n-1 chia hết cho n-1
=> 4 chia hết cho n-1
=> n-1 thuộc ước nguyên của 4
Ư(4)={1;2;4;-1;-2;-4}
=>n-1={1;2;4;-1;-2;-4}
=>n={2;3;5;0;-1;-3}
Vậy n thuộc {2;3;5;0;-1;-3} thì 2n + 3 chia hết cho n - 1
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
Tìm số nguyên n sao cho
a) 3n+3 chia hết n-1
b) n^2+2n-7chia hết n+2
tớ cần gấp cho tớ đáp án nhanh nhé
\(2n-1⋮3n+2\)
\(\Rightarrow3.\left(2n-1\right)⋮3n+2\)
\(\Rightarrow2.\left(3n+2\right)-7⋮3n+2\)
\(\Rightarrow7⋮3n+2\)
\(\Rightarrow3n+2\inƯ\left(7\right)=\left\{-1,1,-7,7\right\}\)
\(\Rightarrow n\in\left\{-1,-\dfrac{1}{3},-3,\dfrac{5}{3}\right\}\)
Mà \(n\in Z\Rightarrow n\in\left\{-1,-3\right\}\)
\(2n-1⋮3n+2\)
\(\Leftrightarrow\left(2n-1\right)-\left(3n+2\right)⋮3n+2\)
\(\Leftrightarrow n+3⋮3n+2\)
\(\Leftrightarrow\left(3n+9\right)-\left(3n+2\right)⋮3n+2\)
\(\Leftrightarrow7⋮3n+2\)
3n+2 là ước của 7 \(\Rightarrow3n+2\in\left\{1;7;-1;-7\right\}\)
\(\Rightarrow n\in\left\{-\dfrac{1}{3};\dfrac{5}{3};-1;-3\right\}\)
n thuộc Z \(\Rightarrow n\in\left\{-1;-3\right\}\)
Ta có: \(2n-1⋮3n+2\)
\(\Leftrightarrow3\cdot\left(2n-1\right)⋮3n+2\)
\(\Leftrightarrow6n-3⋮3n+2\)
\(\Leftrightarrow6n+4-7⋮3n+2\)
mà \(6n+4⋮3n+2\)
nên \(-7⋮3n+2\)
\(\Leftrightarrow3n+2\inƯ\left(-7\right)\)
\(\Leftrightarrow3n+2\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow3n\in\left\{-1;-3;5;-9\right\}\)
\(\Leftrightarrow n\in\left\{-\dfrac{1}{3};-1;\dfrac{5}{3};-3\right\}\)
mà \(n\in Z\)
nên \(n\in\left\{-1;-3\right\}\)
Vậy: \(n\in\left\{-1;-3\right\}\)