Cho biểu thức A = a + b 2 - 4 a b a - b - a b + b a a b
Tìm điều kiện để A có nghĩa
Cho biểu thức m =a căn a /a-4 -a/căn a+2 - căn a / căn a-2 a) tìm điều kiện của a để biểu thức m xác định b) rút gọn biểu thức m c) giá trị biểu thức m tại a=9
a: ĐKXĐ: a>=0; a<>4
b: \(M=\dfrac{a\sqrt{a}-a\sqrt{a}+2a-a-2\sqrt{a}}{a-4}=\dfrac{a-2\sqrt{a}}{a-4}=\dfrac{\sqrt{a}}{\sqrt{a}+2}\)
c: Khi a=9 thì \(M=\dfrac{3}{3+2}=\dfrac{3}{5}\)
cho biểu thức
A=(2a^2/a^2−1−a/a+1+a/a−1)
a)tìm đkxđ của a để biểu thức A xác định
b)rút gọn biểu thức A
c)tìm các giá trị nguyên của a để biểu thức A có giá trị nguyên
Cho A = a.b.c.d, biết a,b,c,d cùng dấu. Trong các biểu thức sau, biểu thức nào bằng biểu thức A?
A. M=(−a).b.c.d
B. N=(−a)(−b).c.(−d)
C. P=(−a)(−b)(−c)(−d)
D. Q=−(a.b.c.d)
Bài 4: Cho biểu thức M = (với x)
a) Rút gọn M
b) Tính giá trị của biểu thức M với x = - 3
Bài 5. Cho hai biểu thức: A = và B =
a) Tính giá trị của biểu thức A khi x = 5
b) Rút gọn biểu thức B
c) Biết P = A.B, tìm các số tự nhiên x để P ∈ Z
cho biểu thức
A=\(\left(\dfrac{2a^2}{a^2-1}-\dfrac{a}{a+1}+\dfrac{a}{a-1}\right)\)
a)tìm đkxđ của a để biểu thức A xác định
b)rút gọn biểu thức A
c)tìm các giá trị nguyên của a để biểu thức A có giá trị nguyên
a) ĐKXĐ: a2-1 ≠0 ⇔ (a-1)(a+1)≠0 ⇔\(\left[{}\begin{matrix}a-1\ne0\\a+1\ne0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ne1\\a\ne-1\end{matrix}\right.\)
b) A=\(\dfrac{2a^2}{a^2-1}-\dfrac{a}{a+1}+\dfrac{a}{a-1}\) , a≠1, -1
=\(\dfrac{2a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}+\dfrac{a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\)
=\(\dfrac{2a^2-a\left(a-1\right)+a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\)
=\(\dfrac{2a^2-a^2+a+a^2+a}{\left(a-1\right)\left(a+1\right)}\)
=\(\dfrac{2a^2+2a}{\left(a-1\right)\left(a+1\right)}\) =\(\dfrac{2a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\) =\(\dfrac{2a}{a-1}\)
vậy A =\(\dfrac{2a}{a-1}\) với a≠1,-1.
c) Có:A= \(\dfrac{2a}{a-1}\) = \(\dfrac{2a-2+2}{a-1}=\dfrac{2\left(a-1\right)+2}{a-1}=2+\dfrac{2}{a-1}\)
Để a∈Z thì a-1 ∈ Z ⇒ (a-1) ∈ Ư(2) =\(\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
a-1 | 1 | -1 | 2 | -2 |
a | 2 | 0 | 3 | -1 |
Thử lại | TM | TM | TM | ko TM(vì a≠-1 |
Vậy để biểu thức A có giá trị nguyên thì a∈\(\left\{2;0;3\right\}\)
a) ĐKXĐ: \(a\notin\left\{1;-1\right\}\)
b) Ta có: \(A=\dfrac{2a^2}{a^2-1}-\dfrac{a}{a+1}+\dfrac{a}{a-1}\)
\(=\dfrac{2a^2}{\left(a+1\right)\left(a-1\right)}-\dfrac{a\left(a-1\right)}{\left(a+1\right)\left(a-1\right)}+\dfrac{a\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}\)
\(=\dfrac{2a^2-a^2+a+a^2+a}{\left(a+1\right)\left(a-1\right)}\)
\(=\dfrac{2a^2+2a}{\left(a+1\right)\left(a-1\right)}\)
\(=\dfrac{2a\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}\)
\(=\dfrac{2a}{a-1}\)
c) Để A nguyên thì \(2a⋮a-1\)
\(\Leftrightarrow2a-2+2⋮a-1\)
mà \(2a-2⋮a-1\)
nên \(2⋮a-1\)
\(\Leftrightarrow a-1\inƯ\left(2\right)\)
\(\Leftrightarrow a-1\in\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow a\in\left\{2;0;3;-1\right\}\)
Kết hợp ĐKXĐ, ta được: \(a\in\left\{0;2;3\right\}\)
Vậy: Để A nguyên thì \(a\in\left\{0;2;3\right\}\)
Cho biểu thức: (a+b-c)-(a-b+c) a) Thu gọn biểu thức trên b) Tính giá trị biểu thức với a=5, b=7, c=8
\(a,\left(a+b-c\right)-\left(a-b+c\right)\)
\(=a+b-c-a+b-c\)
\(=2b-2c\)
\(=2\left(b-c\right)\)
\(b,\) Thay \(a=5,b=7,c=8\) vào biểu thức
\(\Rightarrow\left(5+7-8\right)-\left(5-7+8\right)=-2\)
Cho biểu thức 2 1 2 1 1 K a a a) Tìm điều kiện của a để biểu thức K xác định. b) Rút gọn biểu thức K c) Tính giá trị biểu thức K khi 1 2
\(a.a\ne\pm1\)
\(b.K=\dfrac{1}{a+1}+\dfrac{2}{a^2-1}=\dfrac{a-1}{\left(a-1\right)\left(a+1\right)}+\dfrac{2}{\left(a-1\right)\left(a+1\right)}=\dfrac{a+1}{\left(a-1\right)\left(a+1\right)}=\dfrac{1}{a-1}\)
\(c.K=\dfrac{1}{1-\dfrac{1}{2}}=\dfrac{1}{\dfrac{1}{2}}=2\)
Cho biểu thức: A = 2 a 2 − 5 a + 4 + 3 a 2 − 16 : 5 a 2 + 3 a − 4 , với a ≠ 1 và a ≠ ± 4
a) Rút gọn biểu thức A.
b) Tính giá trị biểu thức A khi a = 5.
a) Gợi ý: a 2 − 5 a + 4 = ( a − 1 ) ( a − 4 ) ; a 2 + 3 a − 4 = ( a − 1 ) ( a + 4 )
Ta rút gọn được A = a + 1 a − 4
b) Thay a = 5 vào biểu thức A tìm được A = 6
c) Ta biến đổi A = a + 1 a − 4 = 1 + 5 a − 4
⇒ A ∈ ℤ ⇒ a ∈ − 1 ; 3 ; 5 ; 9
Cho biểu thức:
A = 1 x - 1 + 4 x 2 - 1 - 2 x 2 - 2 x + 1
a) Tìm điều kiện của x để biểu thức A xác định
b) Rút gọn biểu thức A
a) Ta có: x - 1 ≠ 0 ⇒ x ≠ 1
x2 - 1 = (x + 1)(x - 1) ≠ 0 ⇔ x ≠ -1 và x ≠ 1
x2 - 2x + 1 = (x - 1)2 ≠ 0 ⇔ x - 1 ≠ 0 ⇔ x ≠ 1
ĐKXĐ: x ≠ -1 và x ≠ 1
Cho biểu thức A = (6x+1)2 – (6x+1)(6x-1)
a) Rút gọn biểu thức A.
b) Tính giá trị biểu thức A tại x = -5
a: \(A=36x^2+12x+1-36x^2+1=12x+2\)