Tìm tọa độ điểm cực đại của đồ thị hàm số y = x 3 - 3 x 2 + 3
A. .
B. .
C. .
D. .
tìm m để đồ thị hàm số \(\left(C_m\right):y=x^3-3mx^2+3\left(m^2-1\right)x-m^3+m\) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số O bằng √2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến O ( O là gốc tọa độ )
Lời giải:
$y'=3x^2-6mx+3(m^2-1)=0$
$\Leftrightarrow x^2-2mx+m^2-1=0$
$\Leftrightarrow x=m+1$ hoặc $x=m-1$
Với $x=m+1$ thì $y=-2m-2$. Ta có điểm cực trị $(m+1, -2m-2)$
Với $x=m-1$ thì $y=2-2m$. Ta có điểm cực trị $m-1, 2-2m$
$f''(m+1)=6>0$ nên $A(m+1, -2m-2)$ là điểm cực tiểu
$f''(m-1)=-6< 0$ nên $B(m-1,2-2m)$ là điểm cực đại
$BO=\sqrt{2}AO$
$\Leftrightarrow BO^2=2AO^2$
$\Leftrightarrow (m-1)^2+(2-2m)^2=2(m+1)^2+2(-2m-2)^2$
$\Leftrightarrow m=-3\pm 2\sqrt{2}$
tìm m để đồ thị hàm số \(\left(C_m\right):y=x^3-3mx^2+3\left(m^2-1\right)x-m^3+m\) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số O bằng \(\sqrt{2}\) lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến O ( O là gốc tọa độ )
Tìm tất cả các giá trị thực của tham số m để hàm số y = x 3 - 3 m x 2 + 3 ( m 2 - 1 ) x - m 3 + m có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến gốc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến gốc tọa độ O
A. m = - 3 - 2 2 h o ặ c m = - 1
B. m = - 3 + 2 2 h o ặ c m = - 1
C. m = - 3 + 2 2 h o ặ c m = - 3 - 2 2 .
D. m = - 3 + 2 2
Chọn C
Ta có y ' = 3 x 2 - 6 m x + 3 ( m 2 - 1 )
Hàm số (1) có cực trị thì PT y ' = 0 có 2 nghiệm phân biệt
⇔ x 2 - 2 m x + m 2 - 1 = 0 có 2 nhiệm phân biệt
Khi đó, điểm cực đại A ( m - 1 ; 2 - 2 m ) và điểm cực tiểu B ( m + 1 ; - 2 m )
Ta có O A = 2 O B ⇔ m 2 + 6 m + 1 = 0
Cho hàm số y = x^3 -3x. Tọa độ của điểm cực đại của đồ thị hàm số là:
A. ( - 2 ; 1 )
B. - 1 ; 2
C. 3 ; 2 3
D. 1 ; - 2
Cho hàm số : \(y=x^3-3mx^2+3\left(m^2-1\right)x-m^3+m\left(1\right)\)
Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến góc tọa độ O bằng \(\sqrt{2}\) lần khoảng cách từ cực tiểu của đồ thị hàm số đến góc tọa độ O
Ta có : \(y'=3x^2-6mx+3\left(m^2-1\right)\)
Để hàm số có cực trị thì phương trình \(y'=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow x^2-2mx+m^2-1=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta=1>0\) với mọi m
Cực đại của đồ thị hàm số là A(m-1;2-2m) và cực tiểu của đồ thị hàm số là B (m+1; -2-2m)
Theo giả thiết ta có :
\(OA=\sqrt{2}OB\Leftrightarrow m^2+6m+1\Leftrightarrow\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)
Vậy có 2 giá trị m là \(\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)
Tìm tọa độ điểm cực đại của đồ thị hàm số y = x 3 - 3 x 2 + 3
A. (0;3).
B. (2;-1).
C. (2;1).
D. (0;-3).
Tính tổng tất cả các giá trị thực của tham số m để hàm số y= x3-3mx2+ 3( m2-1) x- m3+ m có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến gốc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến gốc tọa độ O.
A. -4
B. -5
C. -6.
D. -7
Ta có y’ = 3x2- 6mx + 3( m2-1).
Hàm số đã cho có cực trị thì phương trình y’ =0 có 2 nghiệm phân biệt
⇔ x 2 - 2 m x + m 2 - 1 = 0 có 2 nghiệm phân biệt ⇔ ∆ = 1 > 0 , ∀ m
Khi đó, điểm cực đại A( m-1; 2-2m) và điểm cực tiểu B( m+1; -2-2m)
Ta có
Tổng hai giá trị này là -6.
Chọn C.
a) vẽ trên cùng 1 mặt phẳng đồ thị các hàm số sau: y=-2x+3 và y=x+2 b) tìm tọa độ giao điểm của hai đồ thị hàm số trên bằng phương pháp đại số Giúp mình với
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-2x+3=x+2\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)
Tìm các giá trị của tham số m để đồ thị hàm số: y = - x 3 + 3 x 2 + 3 ( m 2 - 1 ) x - 3 m 2 - 1 có điểm cực đại và điểm cực tiểu cùng với gốc tọa độ tạo thành tam giác vuông tại O.
A. m = 1
D. m = ± 1