Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tố Quyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2023 lúc 19:04

a: \(F\left(3\right)=3\left(3-2\right)=3\cdot1=3\)

\(\left[F\left(\dfrac{2}{3}\right)\right]^2=\left[\dfrac{2}{3}\cdot\left(\dfrac{2}{3}-2\right)\right]^2\)

\(=\left[\dfrac{2}{3}\cdot\dfrac{-4}{3}\right]^2=\left(-\dfrac{8}{9}\right)^2=\dfrac{64}{81}\)

\(G\left(-\dfrac{1}{2}\right)=-\left(-\dfrac{1}{2}\right)+6=6+\dfrac{1}{2}=\dfrac{13}{2}\)

b: F(x)=0

=>x(x-2)=0

=>\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

c: F(a)=G(a)

=>\(a\left(a-2\right)=-a+6\)

=>\(a^2-2a+a-6=0\)

=>\(a^2-a-6=0\)

=>(a-3)(a+2)=0

=>\(\left[{}\begin{matrix}a-3=0\\a+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-2\end{matrix}\right.\)

Cô Pé Tóc Mây
Xem chi tiết
Phạm Thị Kim Anh
Xem chi tiết
Phạm Thị Kim Anh
Xem chi tiết
Midori
Xem chi tiết
KAl(SO4)2·12H2O
2 tháng 11 2019 lúc 15:58

\(f\left(x\right)=\left|x-2015\right|+\left|x+2016\right|\)

a) Ta có: \(\left|x\right|=\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

+) Với \(x=\frac{1}{2}\)

\(f\left(\frac{1}{2}\right)=\left|\frac{1}{2}-2015\right|+\left|\frac{1}{2}+2016\right|=2\)

+) Với \(x=-\frac{1}{2}\)

\(f\left(-\frac{1}{2}\right)=\left|-\frac{1}{2}-2015\right|+\left|-\frac{1}{2}+2016\right|=0\)

Khách vãng lai đã xóa
Kiệt Nguyễn
2 tháng 11 2019 lúc 19:30

c) Áp dụng BĐT |x| + |y| \(\ge\)|x + y|, ta được:

\(f\left(x\right)=\left|x-2015\right|+\left|x+2016\right|=\left|2015-x\right|+\left|x+2016\right|\)

\(\ge\left|\left(2015-x\right)+\left(x+2016\right)\right|=\left|4031\right|=4031\)

(Dấu "="\(\Leftrightarrow\left(2015-x\right)\left(x+2016\right)\ge0\)

TH1: \(\hept{\begin{cases}2015-x\ge0\\x+2016\ge0\end{cases}}\Leftrightarrow-2016\le x\le2015\)

TH2: \(\hept{\begin{cases}2015-x\le0\\x+2016\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2015\\x\le-2016\end{cases}}\left(L\right)\))

Vậy \(f\left(x\right)_{min}=4031\Leftrightarrow-2016\le x\le2015\)

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 8 2017 lúc 5:44

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 4 2019 lúc 6:08

Đáp án B

Adu vip
Xem chi tiết
Trần Thu Hiền
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 12 2023 lúc 19:56

a: \(f\left(x\right)=4x+a-\sqrt{3}\left(2x+1\right)\)

\(=4x+a-2\sqrt{3}\cdot x-\sqrt{3}\)

\(=x\left(4-2\sqrt{3}\right)-\sqrt{3}+a\)

Vì \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2>0\)

nên hàm số \(y=f\left(x\right)=x\left(4-2\sqrt{3}\right)+a-\sqrt{3}\) luôn đồng biến trên R

b: f(x)=0

=>\(x\left(4-2\sqrt{3}\right)+a-\sqrt{3}=0\)

=>\(x\left(4-2\sqrt{3}\right)=-a+\sqrt{3}\)

=>\(x=\dfrac{-a+\sqrt{3}}{4-2\sqrt{3}}\)

nguyễn nam dũng
Xem chi tiết