Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Shuu
Xem chi tiết
Minh Hảo Nguyễn Thị
Xem chi tiết
Shuu
Xem chi tiết
Thành Dương
Xem chi tiết
Hoàng Ánh
Xem chi tiết
Akai Haruma
25 tháng 5 2021 lúc 1:10

Lời giải:

\(y'=\frac{2}{3}x+m\geq 0, \forall x\in\mathbb{R}\Leftrightarrow m\geq -\frac{2}{3}x, \forall x\in\mathbb{R}\)

\(\Leftrightarrow m\geq \max (\frac{-2}{3}x), \forall x\in\mathbb{R}\)

Vì $\frac{-2}{3}x$ không có max với mọi $x\in\mathbb{R}$ nên không tồn tại $m$

Shuu
Xem chi tiết
Nguyễn Hiếu
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 7 2021 lúc 15:14

\(y'=-x^2-2\left(m-2\right)x+m-2\)

Hàm nghịch biến trên TXĐ khi và chỉ khi \(y'\le0;\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\left(đúng\right)\\\Delta'=\left(m-2\right)^2+m-2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left(m-2\right)\left(m-1\right)\le0\)

\(\Leftrightarrow1\le m\le2\)

An Hoài Nguyễn
Xem chi tiết
Trần Ngân
21 tháng 6 2021 lúc 11:53

undefined

Shuu
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 3 2018 lúc 11:38

Chọn A