Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngọc hân
Xem chi tiết
loann nguyễn
13 tháng 8 2021 lúc 11:21

\(a.3x^2-3y^2-2\left(x-y\right)^2\\ =3\left(x^2-y^2\right)-2\left(x-y\right)^2\\ =3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\\ =\left(x-y\right)\left[3\left(x+y\right)-2.\left(x-y\right)\right]=\left(x-y\right)\left(x+5y\right)\\ b.x^2-y^2-2x-2y\\ =\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\\ =\left(x+y\right)\left(x-y-2\right)\\ c.\left(x-1\right)\left(2x+1\right)+3\left(x-1\right)\left(x+2\right)\left(2x+1\right)\\ =\left(x-1\right)\left(2x+1\right)\left[1+3\left(x+2\right)\right]\\ =\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\\ d.\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)-\left(5-x\right)\left(2x+1\right)\\ =\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)+\left(x-5\right)\left(2x+1\right)\\ =\left(x-5\right)\left[\left(x-5\right)+\left(x+5\right)+\left(2x+1\right)\right]\\ =\left(x-5\right)\left(4x+1\right)\)

 

linh phạm
13 tháng 8 2021 lúc 11:12

a) 3x2-3y2-2(x-y)2

\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\\ =3\left(x+y\right)\left(x-y\right)-2\left(x-y\right)^2\\ =\left(x-y\right)\left(3-2x+2y\right)\)

Nguyễn Lê Phước Thịnh
13 tháng 8 2021 lúc 11:47

a: \(3x^2-3y^2-2\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\left(x-y\right)\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

b: Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

Đoàn Phan Hưng
Xem chi tiết
Thao Cao Phuong
Xem chi tiết

Bài 1 yêu cầu gì em?

Bài 2:

\(a,x\left(x-1\right)+5\left(x-1\right)=\left(x+5\right)\left(x-1\right)\\ b,3x\left(x+1\right)+3\left(x+1\right)=\left(3x+3\right)\left(x+1\right)=3\left(x+1\right)\left(x+1\right)=3\left(x+1\right)^2\\ c,x\left(x-3\right)+xy\left(x-3\right)=\left(x+xy\right)\left(x-3\right)=x\left(y+1\right)\left(x-3\right)\\ d,2x\left(x-2\right)-6\left(x-2\right)=\left(2x-6\right)\left(x-2\right)=2\left(x-3\right)\left(x-2\right)\)

HT.Phong (9A5)
15 tháng 10 2023 lúc 9:22

Bài 1:

a) \(3xy+6y\)

\(=3y\left(x+2\right)\)

b) \(3x^2+9x\)

\(=3x\left(x+3\right)\)

c) \(6x-9y^2\)

\(=3\left(2x-3y^2\right)\)

d) \(10xy^2-6x^2y\)

\(=2xy\left(5y-3x\right)\)

Bài 2:

a) \(x\left(x-1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(x+5\right)\)

b) \(3x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(3x+3\right)\)

\(=3\left(x+1\right)\left(x+1\right)\)

\(=3\left(x+1\right)^2\) 

c) \(x\left(x-3\right)+xy\left(x-3\right)\)

\(=\left(x+xy\right)\left(x-3\right)\)

\(=x\left(1+y\right)\left(x-3\right)\)

d) \(2x\left(x-2\right)-6\left(x-2\right)\)

\(=\left(2x-6\right)\left(x-2\right)\)

\(=2\left(x-3\right)\left(x-2\right)\)

⭐Hannie⭐
15 tháng 10 2023 lúc 9:22

Bài `1`

`a,3xy +6y`

`= 3y(x+2)`

`b,3x^2+9x`

`= 3x(x+3)`

`c,6x-9y^2`

`= 3(2x- 3y^2)`

`d,10xy^2-6x^2y`

`= 2xy(5y-3x)`

Trần Diệu Linh
Xem chi tiết
Nguyễn Việt Hoàng
27 tháng 9 2019 lúc 21:16

\(\left(x-3\right)\left(x-1\right)-3\left(x-3\right)\)

\(=\left(x-3\right)\left(x-1-3\right)\)

\(=\left(x-3\right)\left(x-4\right)\)

Nguyễn Việt Hoàng
27 tháng 9 2019 lúc 21:18

\(\left(x-1\right)\left(2x+1\right)+3\left(x-1\right)\left(x+2\right)\left(2x+1\right)\)

\(=\left(x-1\right)\left(2x+1\right)\left(1+3x+6\right)\)

\(=\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\)

Nguyễn Việt Hoàng
27 tháng 9 2019 lúc 21:22

\(\left(x-5\right)^2+\left(5+x\right)\left(x-5\right)-\left(5-x\right)\left(2x+1\right)\)

\(=\left(x-5\right)^2+\left(5+x\right)\left(x-5\right)+\left(x-5\right)\left(2x+1\right)\)

\(=\left(x-5\right)(x-5+5+x+2x+1)\)

\(=\left(x-5\right)\left(4x+1\right)\)

Còn lại bạn tự làm nhá

Trang Đoàn
Xem chi tiết
dam quang tuan anh
8 tháng 11 2017 lúc 21:57

x^10 + x^5 + 1 
= x^10 + x^9 - x^9 + x^8 - x^8 + x^7 - x^7 + x^6 - x^6 + x^5 + x^5 - x^5 + x^4 - x^4 + x^3 - x^3 + x^2 - x^2 + x - x + 1 
= (x^10 + x^9 + x^8) - (x^9 + x^8 + x^7) + (x^7 + x^6 + x^5) - (x^6 + x^5 + x^4) + (x^5 + x^4 + x^3) - (x^3 + x^2 + x) + (x^2 + x + 1) 
= x^8 (x^2 + x + 1) - x^7 (x^2 + x + 1) + x^5 (x^2 + x + 1) - x^4 (x^2 + x + 1) + x^3 (x^2 + x + 1) - x (x^2 + x + 1) + (x^2 + x + 1) 
= (x^2 + x + 1) (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1) 
----------------------- 
Phương pháp: 
Khi gặp bài toán phân tích thành nhân tử dạng x^(3m + 1) + x^(3n + 2) + 1 em thêm bớt các hạng tử từ bậc cao nhất trừ đi 1 đến x (bậc nhất) sao cho tổng số các hạng tử trong đa thức mới là một bội của 3. Sau đó nhóm ba hạng tử một sao cho trong mỗi nhóm có x² + x + 1 
Dạng này khi phân tích luôn có kết quả là: (x² + x + 1).Q(x)

dam quang tuan anh
8 tháng 11 2017 lúc 21:57

x^7 + x^2 + 1 = x^7 + x^6 - x^6 + x^5 - x^5 + x^4 - x^4 +x^3 - x^3 +2x^2 - x^2 +x - x +1 
=(x^7 + x^6 + x^5) - (x^6 +x^5 +x^4) + (x^4 + x^3 +x^2) - (x^3 +x^2 + x) + (x^2 + x +1) 
=x^5(x^2 + x + 1) - x^4(x^2 + x + 1) +x^2(x^2 + x + 1) - x(x^2 + x + 1) + (x^2 + x + 1) 
=(x^2 + x + 1)(x^5 - x^4 +x^2 -x +1)

Vương Thị Hiền
Xem chi tiết
Thức Nguyễn Thế
20 tháng 10 2015 lúc 20:21

Các phần về đa thức bạn có thể vào đây giải trực tuyến luôn bạn nhé.

http://ungdungtoan.com/

 

Nguyễn Thị MInh Huyề
Xem chi tiết
Nguyễn Minh Đăng
24 tháng 7 2020 lúc 15:37

Bài làm:

a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(x^2+5x+5=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)

\(=\left(x^2+5x+5\right)^2\)

b) Tương tự như a phân tích và đặt ra được: \(t^2-1-24=t^2-25=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)

c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+11=t\)\(\Rightarrow\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1\)

\(=\left(t-1\right)\left(t+1\right)=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)

d) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x+11=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)-24=t^2-1-24=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

Khách vãng lai đã xóa
KCLH Kedokatoji
24 tháng 7 2020 lúc 15:39

Làm mẫu cho 1 vd:

a, (x+1)(x+2)(x+3)(x+4)+1

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)(1)

Đặt \(y=x^2+5x+5\)

Khi đó ::

(1) = \(\left(y-1\right)\left(y+1\right)+1\)

\(=y^2-1+1=y^2\)

Thay vào ta được: \(\left(x^2+5x+5\right)^2\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
24 tháng 7 2020 lúc 20:21

a) (x+1)(x+2)(x+3)(x+4)+1=[(x+1)(x+4)].[(x+2)(x+3)]+1=(x2+5x+4)(x2+5x+6)+1

đặt t=x2+5x+5 ta có đa thức (t-1)(t+1)+1=t2-1+1=t2. mà t=x2+5x+5

=> (x+1)(x+2)(x+3)(x+4)+1=(x2+5x+5)2

b) (x+1)(x+2)(x+3)(x+4)-24. theo kết quả câu (a) ta được (x+1)(x+2)(x+3)(x+4)=(x2+5x+4)(x2+5x+6)

đặt t=x2+5x+5 ta có đa thức (t-1)(t+1)-24=t2-1-24=t2-25=(t-5)(t+5)

mà t=x2+5x+5 => (t-5)(t+5)=(x2+5x)(x2+5x+10)

c) (x+1)(x+3)(x+5)(x+7)+15=[(x+1)(x+7)].[(x+3)(x+5)]+15=(x2+8x+7)(x2+8x+15)+15

đặt x2+8x+11=t ta có đa thức (t-4)(t+4)+15=t2-16+15=t2-1=(t-1)(t+1)

mà t=x2+8x+11 => (t-1)(t+1)=(x2+8x-10)(x2+8x+12)

d) (x+2)(x+3)(x+4)(x+5)-24=[(x+2)(x+5)][(x+3)(x+4)]-24=(x2+7x+12)(x2+7x+10)-24

đặt t=x2+7x+11 ta có đa thức (t-1)(t+1)-24=t2-1-24=t2-25=(t+5)(t-5)

mà t=x2+7x+11 => (t-5)(t+5)=(x2+7x+6)(x2+7x+16)

Khách vãng lai đã xóa
nhím
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 21:38

a: Ta có: \(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)\)

\(=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]\)

\(=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)\)

\(=\left(x-1\right)\left(2x^2-9x+6\right)\)

b: Ta có: \(x\left(y-x\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)\)

\(=-x\left(x-y\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)\)

\(=\left(x-y\right)\left[-x\left(x-y\right)^2-y\left(x-y\right)+xy\right]\)

\(=\left(x-y\right)\left[-x^3+2x^2y-xy^2-xy+y^2+xy\right]\)

\(=\left(x-y\right)\left(-x^3+2x^2y-xy^2+y^2\right)\)

Lấp La Lấp Lánh
30 tháng 8 2021 lúc 21:38

a) \(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)=\left(x-1\right)\left(2x^2-9x+6\right)\)

b) \(x\left(y-x\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)=\left(x-y\right)\left[-x\left(x-y\right)^2-y\left(x-y\right)+xy\right]=\left(x-y\right)\left(-x^3+2x^2y-xy^2-xy+y^2+xy\right)=\left(x-y\right)\left(-x^3+y^2+2x^2y-xy^2\right)\)

c) \(xy\left(x+y\right)-2x-2y=xy\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(xy-2\right)\)

d) \(x\left(x+y\right)^2-y\left(x+y\right)^2+y^2\left(x-y\right)=\left(x+y\right)^2\left(x-y\right)+y^2\left(x-y\right)=\left(x-y\right)\left(x^2+2xy+y^2+y^2\right)=\left(x-y\right)\left(x^2+2y^2+2xy\right)\)

linh phạm
30 tháng 8 2021 lúc 21:39

\(a.2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)\\ =\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]\\ =\left(x-1\right)\left(2x^2-9x+6\right)\)

 

Dung Vu
Xem chi tiết
Akai Haruma
20 tháng 11 2021 lúc 9:03

Lời giải:

a.

$=\frac{1}{2}(x^2-4y^2)=\frac{1}{2}[x^2-(2y)^2]=\frac{1}{2}(x-2y)(x+2y)$

b.

$=\frac{1}{3}x(y+3xz+3z)$

c.

$=\frac{2}{25}x(225x^2-4)=\frac{2}{25}(15x-2)(15x+2)$

d.

$=\frac{1}{5}x^2(2+25x+5y)$

Buddy
Xem chi tiết
@DanHee
23 tháng 7 2023 lúc 15:47

\(a,\left(x-1\right)^2-2^2=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\\ b,=\left(2x\right)^2+2.2x.3+3^2\\ =\left(2x+3\right)^2\\ c,=x^3-\left(2y\right)^3\\ =\left(x-2y\right)\left(x^2+2xy+4y^2\right)\\ d,=x^3\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^3-1\right)\left(x^2-1\right)\\ =\left(x-1\right)\left(x^2+x+1\right)\left(x-1\right)\left(x+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\)

\(e,=-4x^2\left(x-1\right)+\left(x-1\right)\\ =\left(1-4x^2\right)\left(x-1\right)\\ =\left(1-2x\right)\left(1+2x\right)\left(x-1\right)\)

\(f,=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3\\ =\left(2x+1\right)^3\)