Trong không gian Oxyz , tìm tất cả các giá trị của tham số m để phương trình x 2 + y 2 + z 2 + 2 x - 4 y + 4 z + m = 0 là phương trình của một mặt cầu.
Trong không gian Oxyz, tìm tất cả các giá trị của tham số m để x 2 + y 2 + z 2 + 2 x - 4 y + 4 z + m = 0 là phương trình mặt cầu.
A. m > 9
B. m ≤ 9
C. m < 9
D. m ≥ 9
Trong không gian với hệ trục tọa độ Oxyz , cho đường thẳng d có phương trình x = 6 + t y = - 2 - 5 t z = - 1 + t . Xét đường thẳng ∆ : x - a 5 = y - 1 - 12 = z + 5 - 1 , với a là tham số thực. Tìm tất cả các giá trị của a để đường thẳng d và ∆ cắt nhau.
A. a = 0
B. a = 4
C. a = 8
D. a = 1 2
Đáp án C
Ta có ∆ : x = a + 5 t ' y = 1 - 12 t ' t ' ∈ ℝ z = - 5 - t ' ⇒ giải hệ 6 + t = a + 15 t ' - 2 - 5 t = 1 - 12 t ' - 1 + t = - 5 - t ' ⇔ 6 + t = a + 15 t ' - 2 - 5 t = 1 - 12 t ' - 1 + t = - 5 - t ' ⇒ a = 8
Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình x 2 + y 2 + z 2 - 4 x + 2 m y + 6 z + 13 = 0 là phương trình của mặt cầu.
Đáp án B.
Để phương trình x 2 + y 2 + z 2 - 4 x + 2 m y + 6 z + 13 = 0 là phương trình của mặt cầu thì
Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình x 2 + y 2 + z 2 - 4 x + 2 m y + 6 z + 13 = 0 là phương trình của mặt cầu.
A . m > 0
B . m ≠ 0
C . m ∈ R
D . m > 0
Trong không gian Oxyz, cho phương trình x 2 + y 2 + z 2 - 2 ( m + 2 ) x + 4 m y - 2 m z + 5 m 2 + 9 = 0 . Tìm tất cả các giá trị của m để phương trình trên là phương trình của một mặt cầu
Đáp án A
Phương trình trên là phương trình của một mặt cầu khi:
Trong không gian Oxyz, cho mặt cầu (S): ( x - 2 ) 2 + ( y + 1 ) 2 + ( z + 2 ) 2 = 4 và mặt phẳng (P): 4x-3y-m=0. Tìm tất cả các giá trị thực của tham số m để mặt phẳng (P) và mặt cầu (S) có đúng 1 điểm chung
A. m=1
B. m=-1 hoặc m=-21
C. m=1 hoặc m=21
D. m=-9 hoặc m=31
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x + 3 ) 2 + y 2 + ( z - 2 ) 2 = m 2 + 4 . Tìm tất cả các giá trị thực của tham số m để mặt cầu (S) tiếp xúc với mặt phẳng (Oyz).
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng Δ : x - 1 1 = y + 2 2 = z + 1 - 1 và mặt phẳng ( α ) :mx+10y-5z+1=0. Tìm tất cả các giá trị của tham số m để Δ ⊥ ( α ) .
A. m=-25.
B. m=5.
C. m=25.
D. m=-5.
Trong không gian với hệ trục tọa độ Oxyz, có tất cả bao nhiêu số tự nhiên của tham số m để phương phương trình x 2 + y 2 + z 2 + 2 ( m - 2 ) y - 2 ( m + 3 ) z + 3 m 2 + 7 = 0 là phương trình của một mặt cầu.
A. 2
B. 3
C. 4
D. 5
Đáp án là C.
Để phương trình đã cho là phương trình mặt cầu thì