Đáp án C
Ta có ∆ : x = a + 5 t ' y = 1 - 12 t ' t ' ∈ ℝ z = - 5 - t ' ⇒ giải hệ 6 + t = a + 15 t ' - 2 - 5 t = 1 - 12 t ' - 1 + t = - 5 - t ' ⇔ 6 + t = a + 15 t ' - 2 - 5 t = 1 - 12 t ' - 1 + t = - 5 - t ' ⇒ a = 8
Đáp án C
Ta có ∆ : x = a + 5 t ' y = 1 - 12 t ' t ' ∈ ℝ z = - 5 - t ' ⇒ giải hệ 6 + t = a + 15 t ' - 2 - 5 t = 1 - 12 t ' - 1 + t = - 5 - t ' ⇔ 6 + t = a + 15 t ' - 2 - 5 t = 1 - 12 t ' - 1 + t = - 5 - t ' ⇒ a = 8
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d có phương trình x - 1 2 = y - 5 = z - 3 4 . Viết phương trình mặt phẳng α chứa trục Oy và song song với đường thẳng d
A. -2x + y = 0
B. x - 2z = 0
C. 2x - z = 0
D. 2x + z = 0
Trong không gian với hệ tọa độ Oxyz, cho d là đường thẳng đi qua gốc tọa độ O, vuông góc với trục Ox và vuông góc với đường thẳng ∆ : x = 1 + t y = 2 - t z = 1 - 3 t . Phương trình của d là
A. x = t y = 3 t z = - t
B. x = t y = - 3 t z = - t
C. x 1 = y 3 = z - 1
D. x = 0 y = - 3 t z = t
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d 1 : x - 3 - 1 = y - 3 - 2 = z + 2 1 và d 2 : x - 5 - 3 = y + 1 2 = z - 2 1 và mặt phẳng (P) có phương trình x + 2 y + 3 z - 5 = 0 . Đường thẳng Δ vuông góc với (P) cắt d 1 và d 2 có phương trình là:
A. ∆ : x - 1 1 = y + 1 2 = z 3
B. ∆ : x - 2 1 = y - 3 2 = z - 1 3
C. ∆ : x - 3 1 = y - 3 2 = z + 2 3
C. ∆ : x - 1 3 = y + 1 2 = z 1
Trong không gian với hệ trục tọa độ Oxyz, phương trình đường thẳng d : x - 1 2 = y + 2 1 = z - 1 song song với đường thẳng và cắt hai đường thẳng d 1 : x - 1 2 = y + 1 1 = z - 2 - 1 và d 2 : x - 1 2 = y - 2 1 = z - 3 3 là
A. ∆ : x + 1 - 1 = y + 1 1 = z - 2 1
B. ∆ : x - 1 1 = y 1 = z - 1 - 1
C. ∆ : x - 1 1 = y - 2 1 = z - 3 - 1
D. ∆ : x - 1 1 = y - 1 = z - 1 1
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d có phương trình x - 1 2 = y + 2 1 = z - 3 4 . Điểm nào sau đây không thuộc đường thẳng d?
A. (1;-2;3)
B. (5;0;11)
C. (-1;3;-1)
D. (3;-1;7)
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d 1 , d 2 lần lượt có phương trình d 1 : x - 2 2 = y - 2 1 = z - 3 3 ; d 2 : x - 1 2 = y - 2 - 1 = z - 1 4 . Mặt phẳng cách đều hai đường thẳng có phương trình là
A. 14 x - 4 y - 8 z + 1 = 0
B. 14 x - 4 y - 8 z + 3 = 0
C. 14 x - 4 y - 8 z - 3 = 0
D. 14 x - 4 y - 8 z - 1 = 0
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 : x + 3 1 = y - 2 - 1 = z - 1 2 , d 2 : x - 2 2 = y - 1 1 = z + 1 1 và mặt phẳng P : x + 3 y + 2 z - 5 = 0 Đường thẳng vuông góc với (P), cắt cả d 1 và d 2 có phương trình là:
A. x + 7 1 = y - 6 3 = z + 7 2
B. x + 3 1 = y + 2 3 = z - 1 2
C. x 1 = y 3 = z + 2 2 .
D. x + 4 1 = y - 3 3 = z + 1 2
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x 2 = y − 1 2 = z − 1 và điểm A(1;0;0). Viết phương trình đường thẳng đi qua A và song song với đường thẳng d.
A. x − 1 1 = y 1 = z 4
B. x + 1 1 = y 1 = z 4
C. x + 1 2 = y 2 = z − 1
D. x − 1 2 = y 2 = z − 1
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P = x + y + z − 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z − 2 − 1 . Đường thẳng d ' đối xứng với d qua mặt phẳng (P) có phương trình là
A. x + 1 1 = y + 1 2 = z + 1 7
B. x + 1 1 = y + 1 − 2 = z + 1 7
C. x − 1 1 = y − 1 2 = z − 1 7
D. x − 1 1 = y − 1 − 2 = z − 1 7