Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thái Sơn
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
Lai Guan Lin
Xem chi tiết
Akai Haruma
13 tháng 6 2020 lúc 1:00

Lời giải:

a)

Khi $m=1$ thì pt trở thành:

$x^2+4x-1=0$

$\Leftrightarrow (x+2)^2=5\Rightarrow x+2=\pm \sqrt{5}$

$\Rightarrow x=-2\pm \sqrt{5}$

b)

Để pt có 2 nghiệm pb $x_1,x_2$ thì:

$\Delta'=(m+1)^2-(-2m^4+m^2)>0\Leftrightarrow 2m^4+2m+1>0(*)$

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=-2(m+1)\\ x_1x_2=-2m^4+m^2\end{matrix}\right.\)

Khi đó:

$(m-1)x_1+x_1x_2+(m-1)x_2=-1$

$\Leftrightarrow (m-1)(x_1+x_2)+x_1x_2=-1$

$\Leftrightarrow -2(m-1)(m+1)+(-2m^4+m^2)=-1$

$\Leftrightarrow -2m^4-m^2+3=0$

$\Leftrightarrow (1-m^2)(2m^2+3)=0$

$\Rightarrow m^2=1\Rightarrow m=\pm 1$

Thay vào $(1)$ thấy 2 giá trị đều thỏa mãn.

đặng thị thu thủy
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 13:13

a: Thay m=1 vào pt, ta được:

\(x^2-1=0\)

=>(x-1)(x+1)=0

=>x=1 hoặc x=-1

b: \(\text{Δ}=\left(2m-2\right)^2-4\cdot\left(-m\right)\)

\(=4m^2-8m+4+4m\)

\(=4m^2-4m+4\)

\(=4\left(m^2-m+1\right)\)

\(=4m^2-4m+1+3=\left(2m-1\right)^2+3>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Ta có: \(2\left(x_1+x_2\right)-3x_1x_2+9=0\)

\(\Leftrightarrow2\cdot\left[-2\left(m-1\right)\right]-3\cdot\left(-m\right)+9=0\)

\(\Leftrightarrow-4\left(m-1\right)+3m+9=0\)

=>-4m+4+3m+9=0

=>13-m=0

hay m=13

Nguyễn Huy Tú
6 tháng 2 2022 lúc 13:14

a, Thay m = 1 ta được 

\(x^2-1=0\Leftrightarrow x=1;x=-1\)

b, 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=-m\end{matrix}\right.\)

\(-4\left(m-1\right)+3m+9=0\Leftrightarrow-m+13=0\Leftrightarrow m=13\)

Trần Thị Bích Thu
Xem chi tiết
nguyen thi thu Thuy
25 tháng 10 2015 lúc 19:40

thế x1vào bt =>\(2\times3^2-\left(m+3\right)\times3+m-1=0\Leftrightarrow18-3m-9+m-1=0\)

<=>8 - 2m=0 <=>m=4

thế 4 vào bt 2x2 - (m + 3)x + m - 1 = 0 <=>2x2-7x+3=0 <=>\(\left(x-3\right)\left(2x-1\right)=0\Leftrightarrow x=3\)hoặc x=0.5 thỏa mãn 

b tương tự

Anh Nguyen
Xem chi tiết
phạm ngọc hân
Xem chi tiết
Mysterious Person
1 tháng 9 2018 lúc 8:45

a) để phương trình có 2 nghiệm : \(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\Delta'\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\left(m+2\right)^2-\left(m-3\right)\left(m+1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\6m+7\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{7}{6}\end{matrix}\right.\)

thay \(x_1=2\) vào phương trình ta có :

\(4\left(m-3\right)-4\left(m+2\right)+m+1=0\Leftrightarrow m=19\)

áp dụng hệ thức vi ét ta có : \(x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}=\dfrac{2\left(21\right)}{16}=\dfrac{21}{8}\)

\(\Rightarrow x_2=\dfrac{21}{8}-x_1=\dfrac{21}{8}-2=\dfrac{5}{8}\)

vậy ....................................................................................................

b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}\\x_1x_2=\dfrac{m+1}{m-3}\end{matrix}\right.\)

ta có : \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=10\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=10\Leftrightarrow\dfrac{2\left(m+2\right)}{m-3}:\dfrac{m+1}{m-3}=10\)

\(\Leftrightarrow\dfrac{2m+4}{m+1}=10\Leftrightarrow2m+4=10m+10\Leftrightarrow m=\dfrac{-3}{4}\left(L\right)\)

vậy không có m thỏa mãn điều kiện bài toán .

Mysterious Person
1 tháng 9 2018 lúc 9:04

câu 2) a) để phương trình có 2 nghiệm cùng dấu \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\Delta'\ge0\\p>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\left(m+1\right)^2-\left(m-2\right)\left(m-1\right)\ge0\\\dfrac{m-1}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\5m-1\ge0\\\left(m-1\right)\left(m-2\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m\ge\dfrac{1}{5}\\\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>2\) vậy \(m>2\)

b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m+1\right)}{m-2}\\x_1x_2=\dfrac{m-1}{m-2}\end{matrix}\right.\)

ta có : \(x_1^3+x_2^3=64\Leftrightarrow\left(x_1+x_2\right)^3-3\left(x_1x_2\right)\left(x_1+x_2\right)=64\)

\(\left(\dfrac{2m+2}{2-m}\right)^3+6\left(\dfrac{m-1}{m-2}\right)\left(\dfrac{m+1}{m-2}\right)=64\)

\(\Leftrightarrow\dfrac{\left(-2m-2\right)^3}{\left(m-2\right)^3}+\dfrac{6\left(m-1\right)\left(m+1\right)\left(m-2\right)}{\left(m-2\right)^3}=64\)

\(\Leftrightarrow\dfrac{-8m^3-24m^2-24m-8+6m^2-12m^3-6m+12}{m^2-6m^2+12m-8}=64\)

\(\Leftrightarrow\dfrac{-20m^3-18m^2-30m+4}{m^3-6m^2+12m-8}=64\)

\(\Leftrightarrow84m^3-402m^2+798m-516=0\)

giải nốt nha .

Mysterious Person
1 tháng 9 2018 lúc 9:10

câu 3 : để phương trình có 2 nghiệm . \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(2m+1\right)^2-2\left(2m^2+m-1\right)\ge0\)

\(\Leftrightarrow4m^2+4m+1-4m^2-2m+2\ge0\Leftrightarrow2m+3\ge0\Leftrightarrow m\ge\dfrac{-3}{2}\)

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=-2m-1\\x_1x_2=\dfrac{2m^2+m-1}{2}\end{matrix}\right.\)

ta có : \(\dfrac{x_1^2}{x_2^2}+\dfrac{x_2^2}{x_1^2}>7\Leftrightarrow\dfrac{x_1^4+x_2^4}{x_1^2x_2^2}>7\) \(\Leftrightarrow\dfrac{\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2\left(x_1^2+x_2^2\right)}{x_1^2x_2^2}>7\)

\(\Leftrightarrow\dfrac{\left(\left(x_1+x_2\right)-2x_1x_2\right)^2-2x_1^2x_2^2\left(\left(x_1+x_2\right)^2-2x_1x_2\right)}{x_1^2x_2^2}>7\)

thế vào giải ....

Hương Hari
Xem chi tiết
Trần Thiên Kim
20 tháng 6 2018 lúc 21:16

1. \(2x^2-\left(3m+1\right)x+m^2-m-6=0\)

\(\Delta=b^2-4ac=\left[-\left(3m+1\right)\right]^2-4.2.\left(m^2-m-6\right)=9m^2+6m+1-8m^2+8m+48=m^2+14m+49=\left(m+7\right)^2\ge0\forall m\)

=> PT có 2 nghiệm với mọi m.

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-\left(3m+1\right)\right]}{2}=\dfrac{3m+1}{2}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{m^2-m-6}{2}\end{matrix}\right.\)

Để pt có 2 nghiệm trái dấu \(\Leftrightarrow P< 0\)

\(\Rightarrow\dfrac{m^2-m-6}{2}< 0\Leftrightarrow m^2-m-6< 0\Leftrightarrow-2< m< 3\)

Vậy -2<m<3 thì pt có 2 nghiệm trái dấu.

2. \(mx^2+2\left(m-4\right)x+m+7=0\)

\(\Delta=b^2-4ac=\left[2\left(m-4\right)\right]^2-4.m.\left(m+7\right)=4\left(m^2-8m+16\right)-4m^2-28m=4m^2-32m+64-4m^2-28m=-60m+64\)

Để pt có 2 nghiệm \(\Leftrightarrow\Delta\ge0\)

\(\Rightarrow-60m+64\ge0\Leftrightarrow m\le\dfrac{16}{15}\)

=> PT có 2 nghiệm với \(m\le\dfrac{16}{15}\)

Theo Vi-ét, ta có:

\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{-2\left(m-4\right)}{m}=\dfrac{-2m+8}{m}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{m+7}{m}\end{matrix}\right.\)

Ta có hpt: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m+8}{m}\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m+8}{m}\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\left(2x_2+x_2\right)=-2m+8\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3mx_2=-2m+8\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-2m+8}{3m}\\x_1=2.\dfrac{-2m+8}{3m}\end{matrix}\right.\)

Thay \(x_1;x_2\) vào P:

\(\dfrac{2\left(-2m+8\right)}{3m}.\dfrac{-2m+8}{3m}=\dfrac{m+7}{m}\Leftrightarrow\dfrac{2\left(8-2m\right)^2}{9m^2}-\dfrac{m+7}{m}=0\Leftrightarrow\dfrac{2\left(64-32m+4m^2\right)}{9m^2}-\dfrac{9m\left(m+7\right)}{9m^2}=0\Leftrightarrow\dfrac{128-64m+8m^2-9m^2-63m}{9m^2}=0\Leftrightarrow-m^2-127m+128=0\)(1)

Ta có: a+b+c=-1-127+128=0

=> PT (1) có 2 nghiệm \(m_1=1\left(nhận\right);m_2=\dfrac{c}{a}=\dfrac{128}{-1}=-128\left(nhận\right)\)

Vậy m=1;m=-128 thì pt đề cho có 2 nghiệm thỏa đề bài.

3. \(x^2+\left(4m+1\right)x+2\left(m-4\right)=0\)

\(\Delta=b^2-4ac=\left(4m+1\right)^2-4.1.\left[2\left(m-4\right)\right]=16m^2+8m+1-8m+32=16m^2+33>0\forall m\) => PT luôn có 2 nghiệm phân biệt với mọi m.

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(4m+1\right)}{1}=-4m-1\\P=x_1x_2=\dfrac{c}{a}=\dfrac{2\left(m-4\right)}{1}=2m-8\end{matrix}\right.\)

Ta có hpt: \(\left\{{}\begin{matrix}x_1+x_2=-4m-1\\x_1x_2=2m-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-4m-1\\2x_1x_2=4m-16\end{matrix}\right.\Leftrightarrow x_1+x_2+2x_1x_2=-17\)

Anh Tú
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 12 2022 lúc 20:49

Khi m=1 thì pt sẽ là:

x^2-2*2x+1^2+2=0

=>x^2-4x+3=0

=>x=1 hoặc x=3

lnthaovy0502
Xem chi tiết
lnthaovy0502
27 tháng 12 2020 lúc 16:30

Giúp vớiiiiii