Cho ∫ 1 e 1 x + ln x x ln x + 2 2 d x = a ln 3 + b ln 2 + c 3 với a , b , c ∈ ℤ . Giá trị của a 2 + b 2 + c 2 bằng
A. 3
B. 6
C. 9
D. 12
Cho biểu thức:
E = (\(\dfrac{1}{x+\sqrt{x}}\)+\(\dfrac{1}{\sqrt{x}+1}\)) : \(\dfrac{2}{\sqrt{x}-2}\)
a) Rút gọn E
b) Tính giá trị E khi x = 19 - \(8\sqrt{3}\)
c) tìm x để E = -1
d) Tìm x để E = \(\dfrac{1}{\sqrt{x}}\)
e) Tìm x để E > 0
f) So sánh E với \(\dfrac{1}{2}\)
g) Tìm x \(\in\) Z để \(\dfrac{1}{E}\)\(\in\) Z
h) Với x > 4. So sánh: E và \(\sqrt{E}\)
\(a,ĐK:x>0;x\ne4\\ E=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}-2}{2\sqrt{x}}\\ b,x=19-8\sqrt{3}=\left(4-\sqrt{3}\right)^2\\ \Leftrightarrow E=\dfrac{4-\sqrt{3}-2}{2\left(4-\sqrt{3}\right)}=\dfrac{\left(2-\sqrt{3}\right)\left(4+\sqrt{3}\right)}{26}=\dfrac{5-2\sqrt{3}}{26}\\ c,E=-1\Leftrightarrow\sqrt{x}-2=-2\sqrt{x}\\ \Leftrightarrow3\sqrt{x}=2\Leftrightarrow\sqrt{x}=\dfrac{2}{3}\Leftrightarrow x=\dfrac{4}{9}\left(tm\right)\\ d,E=\dfrac{1}{\sqrt{x}}\Leftrightarrow\dfrac{\sqrt{x}-2}{2}=1\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\left(tm\right)\)
\(e,E>0\Leftrightarrow\sqrt{x}-2>0\left(2\sqrt{x}>0\right)\Leftrightarrow x>4\\ f,E=\dfrac{\sqrt{x}-2}{2\sqrt{x}}=\dfrac{1}{2}-\dfrac{1}{\sqrt{x}}< \dfrac{1}{2}\left(-\dfrac{1}{\sqrt{x}}< 0\right)\\ g,\dfrac{1}{E}=\dfrac{2\sqrt{x}}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)+4}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(4\right)=\left\{-1;0;1;2;4\right\}\left(\sqrt{x}-2>-2\right)\\ \Leftrightarrow\sqrt{x}\in\left\{1;2;3;4;6\right\}\\ \Leftrightarrow x\in\left\{1;9;16;36\right\}\left(x\ne4\right)\\ h,x>4\Leftrightarrow\sqrt{x}-2>0\\ \Leftrightarrow E=\dfrac{\sqrt{x}-2}{2\sqrt{x}}>0\Leftrightarrow E\ge\sqrt{E}\)
a) Rút gọn biểu thức E
b) tìm gt của x để E>1
c) với x > 1 tìm giá trị nhỏ nhất của E
d) tìm x để E = \(\dfrac{9}{2}\)
Đề mắc lỗi hiển thị rồi. Bạn xem lại.
Cho biểu thức E= \(\dfrac{x+\sqrt{x}}{x-2\sqrt{x}+1}\):\(\left[\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{1}{1-\sqrt{x}}+\dfrac{2-x}{x-\sqrt{x}}\right]\)
a) Rút gọn biểu thức
b) tìm gt của x để E>1
c) tìm giá trị nhỏ nhất của E để E >1
\(a,E=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\dfrac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\left(x>0;x\ne1\right)\\ E=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=\dfrac{x}{\sqrt{x}-1}\\ b,E>1\Leftrightarrow\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\\ \Leftrightarrow\sqrt{x}-1>0\left[x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\right]\\ \Leftrightarrow x>1\left(tm\right)\)
\(c,E=\dfrac{x}{\sqrt{x}-1}=\dfrac{x-1+1}{\sqrt{x}-1}=\sqrt{x}+1+\dfrac{1}{\sqrt{x}-1}\\ E=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\ge2\sqrt{\dfrac{\sqrt{x}-1}{\sqrt{x}-1}}+2=2+2=4\\ E_{min}=4\Leftrightarrow\sqrt{x}-1=1\Leftrightarrow x=4\)
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Cho biểu thức: E= (x+2/x\(\sqrt{ }\)x +1 -1\(\sqrt{ }\)x +1) *4\(\sqrt{ }\)x/3 ( với x≥0)
rút gọn E
Bạn vào cái ô đầu tiên trên thanh công thức để gõ lại biểu thức đi bạn. Khó nhìn quá
1. Cho E= \(\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x+1\right)}}}{\sqrt{x^2-4\left(x+1\right)}}\) \(\left(1-\frac{1}{x-1}\right)\)
RG E.
2. Cho E= \(\frac{1+\sqrt{1-x}}{1-x+\sqrt{1-x}}+\frac{1-\sqrt{1+x}}{1+x-\sqrt{1+x}}+\frac{1}{\sqrt{1+x}}\)
a) RGBT
b) So sánh E với \(\frac{\sqrt{2}}{2}\)
\(\)Cho biểu thức: E= ( x+2/x\(\sqrt{x}\)+1 -1/\(\sqrt{x}\)+1) * 4\(\sqrt{x}\)/3 (với x≥0)
a) rút gọn E?
b) tìm gá trị của x để E=8/9
Với \(x\ge0\)
\(E=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)
\(=\left(\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\right).\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{4\sqrt{x}}{3\left(x+\sqrt{x}+1\right)}\)
a) Ta có: \(E=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b) Để \(E=\dfrac{8}{9}\) thì \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)
\(\Leftrightarrow24\left(x-\sqrt{x}+1\right)=36\sqrt{x}\)
\(\Leftrightarrow24x-24\sqrt{x}-36\sqrt{x}+24=0\)
\(\Leftrightarrow24x-60\sqrt{x}+24=0\)
\(\Leftrightarrow24x-12\sqrt{x}-48\sqrt{x}+24=0\)
\(\Leftrightarrow12\sqrt{x}\left(2\sqrt{x}-1\right)-24\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(12\sqrt{x}-24\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x}-1=0\\12\sqrt{x}-24=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x}=1\\12\sqrt{x}=24\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=4\end{matrix}\right.\)
Cho đa thức E(x)= -4x^4 + x + 1. Tìm giá trị của E(x) khi |2x - 1| = 1/2
Ta có \(\left|2x-1\right|=\dfrac{1}{2}\)
\(\left|2x-1\right|=2x-1\) khi \(2x-1\ge0\Leftrightarrow2x\ge1\Leftrightarrow x\ge\dfrac{1}{2}\)
\(\left|2x-1\right|=-\left(2x-1\right)\) khi \(2x-1< 0\Leftrightarrow2x< 1\Leftrightarrow x< \dfrac{1}{2}\)
Ta giải hai phương trình sau:
pt1: \(2x-1=\dfrac{1}{2}\left(ĐK:x\ge\dfrac{1}{2}\right)\)
\(\Leftrightarrow2x=\dfrac{1}{2}-1\)
\(\Leftrightarrow2x=-\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{-\dfrac{1}{2}}{2}=-\dfrac{1}{2}\left(ktm\right)\)
pt2: \(-\left(2x-1\right)=\dfrac{1}{2}\left(ĐK:x< \dfrac{1}{2}\right)\)
\(\Leftrightarrow-2x+1=\dfrac{1}{2}\)
\(\Leftrightarrow-2x=\dfrac{1}{2}-1\)
\(\Leftrightarrow-2x=-\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{-\dfrac{1}{2}}{-2}=\dfrac{1}{4}\left(tm\right)\)
Vậy giá trị của đa thức \(E\left(x\right)\) tại \(x=\dfrac{1}{4}\)
\(E\left(x\right)=-4x^4+x+1=-4.\left(\dfrac{1}{4}\right)^4+\dfrac{1}{4}+1=\dfrac{79}{64}\)
Cho E = \(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right)\) : \(\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-2}\right)\)
a. Rút gọn E
b. Tính E khi x² - 9 = 0
c. Tìm giá trị của x để E = 3
d. Tìm x để E<0
e. Tính x khi E - x - 3 = 0
Mọi người giúp em với ạ. Xin cảm ơn.
CHO X,Y>0,X+Y=CĂN 10.TÌM MIN (1+X^4)(1+Y^4)
MN ƠI GIÚP E MAI E ĐI HOK RỒI
E TICKS CHO