Với \(x\ge0\)
\(E=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)
\(=\left(\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\right).\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{4\sqrt{x}}{3\left(x+\sqrt{x}+1\right)}\)
a) Ta có: \(E=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b) Để \(E=\dfrac{8}{9}\) thì \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)
\(\Leftrightarrow24\left(x-\sqrt{x}+1\right)=36\sqrt{x}\)
\(\Leftrightarrow24x-24\sqrt{x}-36\sqrt{x}+24=0\)
\(\Leftrightarrow24x-60\sqrt{x}+24=0\)
\(\Leftrightarrow24x-12\sqrt{x}-48\sqrt{x}+24=0\)
\(\Leftrightarrow12\sqrt{x}\left(2\sqrt{x}-1\right)-24\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(12\sqrt{x}-24\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x}-1=0\\12\sqrt{x}-24=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x}=1\\12\sqrt{x}=24\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=4\end{matrix}\right.\)