Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 12 2018 lúc 17:19

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 2 2018 lúc 14:19

Chọn A

Hàm số f(x) = (x-6) x 2 + 4  xác định và liên tục trên đoạn [0;3].

Suy ra 

 với a là số nguyên và b, c là các số nguyên dương nên 

a = - 12, b = 3, c = 13. Do đó: S = a + b + c = 4.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 12 2019 lúc 9:03

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 1 2017 lúc 7:49

Chọn A

Ta có 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 10 2018 lúc 11:12

Đáp án đúng : D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 2 2019 lúc 10:06

Chọn D

Dựa vào hình vẽ ta có : M = 3, m = -2. Do đó: M + m = 1

Phạm Dương Ngọc Nhi
Xem chi tiết
Akai Haruma
28 tháng 8 2021 lúc 17:19

Lời giải:
Đặt $\sqrt[3]{1-x}=a; \sqrt[4]{1+x}=b$ thì bài toán trở thành:

Cho $a,b\geq 0$ thỏa mãn $a^4+b^4=2$

Tìm max $P=ab+a+b$

Thật vậy, áp dụng BĐT AM-GM:

$2=a^4+b^4\geq 2a^2b^2\Rightarrow ab\leq 1$

$a^4+b^4\geq \frac{1}{2}(a^2+b^2)^2$

$a^2+b^2\geq \frac{1}{2}(a+b)^2$

$\Rightarrow 2=a^4+b^4\geq \frac{(a+b)^4}{8}$

$\Rightarrow (a+b)^4\leq 16$

$\Rightarrow a+b\leq 2$

Do đó: $P=ab+a+b\leq 1+2=3$

Vậy $P_{\max}=3$ khi $a=b=1\Leftrightarrow x=0$

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 11 2017 lúc 13:57

Chọn D

Sonyeondan Bangtan
Xem chi tiết
Hồng Phúc
8 tháng 12 2021 lúc 22:55

Áp dụng BĐT \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\):

\(y^2=\left(\sqrt{sinx}+\sqrt{1-sinx}\right)^2\le sinx+1-sinx=1\)

\(\Rightarrow-1\le y\le1\)

\(\Rightarrow M^4-m^4=0\)